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Context

Obligations imposed by governments:
� In France: electricity providers (“Obligés”) have a target of Energy Saving
Certificates1 to hold at a predetermined horizon (' 3 years).
If they fail, they face financial penalties.

Existing incentives “Provider→ customers”:
◦ Comparison to similar customers

� EDF, Total, Engie, . . .
◦ Reward/Bonus when reduction compared to past consumption

� “SimplyEnergy”2, “Plüm énergie”3, “OhmConnect”4

↪→ Ranking games: A reward based on the comparison between similar customers

1www.powernext.com/french-energy-saving-certificates
2www.simplyenergy.com.au/residential/energy-efficiency/reduce-and-reward
3www.plum.fr/cagnotte/
4www.ohmconnect.com/
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A field of agents at the lower level

� The population is divided into K clusters of indistinguishable consumers. Each
cluster k ∈ [K] represents a proportion ρk.

� Xa
k(t) the energy consumption of a customer of k, forecasted at time t for

consumption at T > t :

Xa
k(t) = Xk(0) +

∫ t

0
ak(s)ds + σk

∫ t

0
dWk(s), Xk(0) = xnomk , (1)

with
◦ {Wk}1≤k≤K a family of K independent Brownian motions
◦ ak a progressively measurable process satisfying E

∫ T
0 |a(s)|ds < ∞

Interpretation:
� ak is the consumer’s effort to reduce his electricity consumption.
� Without effort (a ≡ 0), customers have a mean nominal consumption xnomk , and
the terminal p.d.f. of Xa

k(T) is:

f nomk (x) := ϕ
(

x ; xnomk , σk
√

T
)

,

where ϕ( · ;µ, σ) is the pdf for N (µ, σ).
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Rank-based reward
In the N-players game setting:

� each subpopulation k contains Nk players
� the terminal ranking of a player i, consuming Xi

k(T), is measured by

1

Nk

Nk∑
j=1

1Xj
k(T)≤Xi

k(T)

⇒ The reward function should be decreasing (Low rank = good energy saver)

(empirical cumulative
distribution

)

With mean-field assumption:
� If Xk(T) ∼ µk, the terminal ranking of a player consuming x is r = Fµ(x)

Assumption: The reward R has the form
R × [0, 1] 3 (x, r) 7→ R (x, r) = B(r)− px , (2)

� We call R the total reward and B the additional reward.
� −px represents the natural incentive to reduce the consumption, coming from
the price p to consume one unit of energy

� When R(x, r) is independent of x, the reward is purely ranked-based
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Mean-field game between consumers

Agents’ problem:
Given the reward R and the terminal consumption distribution µ̃k,

Vk(R, µ̃k) := sup
a

E

Rµ̃k (X
a
k(T))−

∫ T

0
cka2

k(t)dt︸ ︷︷ ︸
cost of effort

 , (P cons)

where Rµ(x) = R(x,Fµ(x)).

Interpretation:
� The cost corresponds to the purchase of new equipment (new heating
installation, isolation, ...).

� In exchange, the consumer receives B(r), depending on his rank r = Fµ̃k (x),
where µ̃k is the k-subpopulation’s distribution.

� The quantity Vk(R, µ̃k) is called the optimal utility of an agent of k.
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Agents’ best response

Theorem (Bayraktar and Zhang, 2021,Proposition 2.1)

Given R ∈ R and µ̃k ∈ P(R), let

βk(µ̃) =

∫
R

f nomk (x) exp
(

Rµ̃(x)
2ckσ2

k

)
dx (< ∞) . (3)

Then, the optimal terminal distribution µ∗
k of cluster k has p.d.f.

fµ∗
k
(x) = 1

β(µ̃k)
f nomk (x) exp

(
Rµ̃k (x)
2ckσ2

k

)
, (4)

and the optimal value is then Vk(R, µ̃k) = 2ckσ2
k lnβk(µ̃k) .

Definition: µk ∈ P(R) is an equilibrium if it is a fixed-point of the best response map
Φk : µ̃k 7→ µ∗

k ,

with µ∗
k given by (4).
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Nash Equilibrium

For purely ranked-based reward (Bayraktar and Zhang, 2021, Theorem 3.2)

The equilibrium νk is unique and the quantile is given by

qνk (r) = xnomk + σk
√

TN −1


∫ r
0 exp

(
− B(z)

2ckσ2
k

)
dz

∫ 1
0 exp

(
− B(z)

2ckσ2
k

)
dz

 . (5)

Theorem

Let R(x, r) = B(r)− px. Then, the equilibrium µk is unique, and satisfies

qµk (r) = qνk (r)−
pT
2ck

, (6)

where νk is the (unique) equilibrium distribution for p = 0 (purely ranked-based
reward), defined in (5).

⇒ add of a linear part in “x” acts as a shift on the probability density function.
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Retailer’s problem

For an equilibrium (µk)k∈[K], the mean consumption is mµk =
∫ 1
0 qµk (r)dr , and the

overall mean consumption is mµ =
∑

k∈[K] ρkmµk .

Principal’s problem:

max
B∈Rr

b

{
s (mµ) + (p − cr)mµ −

∫ 1

0
B(r)dr

∣∣∣∣∣ µk = εk(B)

Vk(B) ≥ Vpi
k

}
(P ret)

where
� Rr

b is the set of bounded and decreasing rewards,
� µk = εk(B) the agents’ equilibrium given additional reward B(·),
� s(·) denotes the valuation of the energy savings (given by regulator),
� cr denotes the production cost of energy,
� Vpi is the reservation utility (utility when B ≡ 0)

In the sequel, we denote by g(·) the function g : m 7→ s(m)− crm .
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Optimal reward – Homogeneous population (K = 1)
Principal’s problem:

max
B∈Rr

b

{
s (mµ) + (p − cr)mµ −

∫ 1

0
B(r)dr

∣∣∣∣∣ µ = ε(B)

V(B) ≥ Vpi

}
(P ret)

Using the characterization of the equilibrium,

Bµ(r) = Vpi + 2cσ2 ln (ζµ(qµ(r))) + pqµ(r)
(
= ε−1(µ)

)
,

with ζµ := fµ/f nom.

Reformulation in the distribution space:

(P ret)



max
µ

g
(∫ +∞

−∞
yfµ(y)dy

)
− Vpi − 2cσ2

∫ +∞

−∞
ln
(

fµ(y)
f nom(y)

)
fµ(y)dy

s. t.
∫ +∞

−∞
fµ(y)dy = 1

y 7→ ln
(

fµ(y)
f nom(y)

)
+

p
2cσ2

y bounded and decreasing

B = ε−1(µ)

+B bounded and decreasingµ distrib.
Idea:

(P̃ ret)

Relaxation
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Optimal reward – Homogeneous population (K = 1)
Assumption: The function s : R → R is supposed to be decreasing, concave and
differentiable with ‖s′(m)‖ ≤ Ms.

Lemma

The optimal distribution µ∗ for (P̃ ret) satisfies the following equation:

fµ(y) ∝ f nom(y) exp
(

y g′(mµ)

2cσ2

)
(7)

Sketch of proof : Use optimality conditions, sufficient for (P̃ ret)

Theorem – Analytic formula of the optimal reward

Let δ(m) = p − cr + s′(m) . The distribution µ∗ ↪→ N (m∗, σ
√

T) , where m∗ satisfies

m∗ = xpi + T
2c

δ(m∗) , (8)

is optimal for (P̃ ret) . Moreover, the associated reward B∗ is

B∗(r) = c
T

[
(xpi)2 − (m∗)2

]
+ qµ∗ (r)δ(m∗) . (9)

Remark: The function δ(·) is viewed as the reduction desire of the provider.
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Numerical computation for general case

Restriction to piecewise linear reward:
� For N ∈ N, ΣN := {0 = η1 < η2 < . . . < ηN = 1}.
� For M ∈ R+, we define the class of bounded
piece-wise linear rewards adapted to ΣN as

R̂N
M :=

{
r ∈ [0, 1] 7→

N−1∑
i=1

1r∈[ηi,ηi+1[

[
bi +

bi+1 − bi
ηi+1 − ηi

(r − ηi)

] ∣∣∣∣∣ b ∈ [−M,M]N

b1 ≥ . . . ≥ bN

}
.

� RN
M(b) is the reward function obtained as a linear interpolation of b.

Optimization by a black-box solver:
� We construct an oracle b ∈ RN 7→ π ret(b), where π ret(b) is the retailer objective.
� We use a black-box solver, here CMA-ES (Hansen, 2006).

η1 η2 η3 η4 η5 η6 η7 η8 η9 η10

B
=

R
N M
(b
)
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Instance

Parameter Segment 1 Segment 2 Unit
T 3 years
p 0.17 e/kWh
cr 0.15 e/kWh

X(0) 18 12 MWh
σ 0.6 0.3 MWh
c 2.5 5 e [MWh]−2 [years]2
s m 7→ 0.1m2 e
ρ 0.5 0.5 -

Table: Parameters of the instance
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Results – K = 1
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Figure: Optimization in the homogeneous case

Consumption reduction:
� Nominal consumption: xnom = 18 MWh
� With only price incentive: xpi = 17 MWh
� With optimal reward B∗: m = 15.4 MWh
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Figure: Trajectories for 20 consumers (homogeneous case)

Consumption reduction:
� Nominal consumption: xnom = 18 MWh
� With only price incentive: xpi = 17 MWh
� With optimal reward B∗: m = 15.4 MWh
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Results – K > 1
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Figure: Optimization in the heterogeneous case
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Figure: Trajectories for 20 consumers (heterogeneous case)
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Conclusion

Study of a specific framework where it is possible to
� characterize the mean-field equilibrium
� explicitly find the optimal reward (K = 1)
� numerically determine good reward functions (K > 1)

Perspectives:
And if we can’t (or don’t want to) ensure Utility ≥ Reservation utility for all
the agents ?
More complex reward functions ?
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Thank you for your attention !
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