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In this talk

Study of a Mean-field MDP for heterogeneous population
Solutions via an ergodic eigenproblem
Refined Policy Iteration Algorithm à la Howard and resolution of
high-dimensional instances
Application to electricity pricing:

→ Optimality of periodic promotions for important switching costs
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Section 1

Definition of the model

1 Definition of the model
Lifted MDP
Model
Ergodic control

2 Algorithms

3 Application to electricity pricing
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MDP - Homogeneous population
A Markov Decision Process (MDP) is represented by a 4-tuple
M = (X , A, P(a), θ(a)), where

X = {1, . . . ,N} is the state space,
A is the action space,
P(a) ∈ RN×N is the transition matrix associated with action a ∈ A,
θ(a) ∈ RN is the instantaneous reward to be in a given state due to
action a ∈ A.

(Bilevel) interpretation:
1. A controller chooses an action a,
2. An agent is influenced by this action:
he moves from n to m with probability P(a)n,m ,

3. The controller’s reward is θ(a)n .
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I-agent MDP - Homogeneous population
A I-agent Markov Decision Process (MDP) is represented by a 5-tuple
(X , A, P(a), θ(a), I), where

X = {1, . . . ,N} is the state space,
A is the action space,
P(a) ∈ RN×N is the transition matrix associated with action a ∈ A,
θ(a) ∈ RN is the instantaneous reward to be in a given state due to
action a ∈ A.

(Bilevel) interpretation:
1. A controller chooses an action a,
2. Each agent i ∈ [I] is influenced by this action:
he moves from ni to mi with probability P(a)ni,mi ,

3. The controller’s reward is 1
I
∑

i∈[I]θ(a)ni .
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3. The controller’s reward is 1
I
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Remark: The I-agent MDP is equivalent to a standard MDP with
state space: X I,
transition matrix Q(a) = diag(P(a), . . . ,P(a)) ∈ RNI×NI .

Ergodic Control : Application to Electricity Pricing Q.Jacquet, W. van Ackooij, C. Alasseur, S. Gaubert 5 / 22



Lifted MDP - Homogeneous population

We define the lifted MDP associated withM as the deterministic MDP
(P(X ),A,T(a), r(a)), where

P(X ) = ∆N is the set of probability measures on X ,
T(a) := [µ ∈ ∆N 7→ µP(a)] is the transition function which gives the
next state for action a,
r(a) :=

[
µ ∈ ∆N 7→ 〈θ(a), µ〉N

]
is the expected instantaneous reward

according to a given measure due to action a.

Proposition (Mean-field MDP, see Motte and Pham, 2019)

For an infinite number of indistinguishable players (I → ∞), the I-player
MDP corresponds to the lifted MDP.

� The matrix P(a) is no longer the Markov kernel but de-
scribes the dynamics of the lifted MDP.
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Model – Ergodic control on the lifted MDP
1. Heterogeneous population: each cluster k ∈ [K] represents a
proportion ρk of the overall pop.

2. Distribution: µk
t ∈ ∆N the distribution of the population of

cluster k over [N].
3. Reward:

r : (at, µt) 7→
∑

k∈[K]

ρk

〈
θk(at), µ

k
t

〉
N

4. Transition: µk
t = µk

t−1Pk(at)

5. Controller’s objective (average long-term reward):

g∗(µ0) = sup
π∈Π

lim inf
T→∞

1

T

T∑
t=1

r(πt(µt), µt) . (AvR)

Assumptions:
(A1) a 7→ Pk(a) is continuous,
(A2) There exists L such that for any sequence of actions
(a1, . . . , aL) ∈ AL,

∏L
i=1 P(ai) � 0,

(A2′) For any action a ∈ A, P(a) � 0,
(A3) ∃Mr such that, |θkn(a)| ≤ Mr for every k ∈ [K], n ∈ [N] and a ∈ A.
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Ergodic control

µ1

µ2

µ3

Dk

Let Dk := vex
(
{µkPk

L(a) | a ∈ A, µk ∈ ∆N}
)
,

and D =×k∈[K] Dk .

Lemma

Let (A1) – (A2) hold. Then Dk ⊆ relint ∆K
N .

Moreover, for t ≥ 1, µt ∈ D for any policy π ∈ Π.

For v : ∆K
N → R, the Bellman operator B is

B v (µ) = max
a∈A

{r(x, µ) + v(µP(a))} .

Theorem

Let (A1) – (A2) hold. Then, the ergodic eigenproblem

g1D +h = B h

admits a solution g∗ ∈ R and h∗ Lipschitz and convex on D.
Moreover, g∗ satisfies (AvR), and a∗(·) ∈ arg maxB h∗ defines an optimal
policy.
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Deterministic MDP without controllability – the
most degenerate case

Time Transitions Assumption
Schweitzer, 1985 discrete stochastic unichain1
Biswas, 2015 discrete stochastic Doeblin / minorization2
Mallet-Paret and Nussbaum, 2002 discrete deterministic quasi-compactness
Fathi, 2010 continuous deterministic controlability3
Zavidovique, 2012 discrete deterministic controlability
Calvez et al., 2014 continuous deterministic contraction of the dynamics (A2)

This work discrete deterministic contraction of the dynamics (A2)

Standard unichain/Doeblin type conditions entail that the eigenvector is unique, up to an
additive constant, this is no longer true in our case.

weak-KAM

1the Markov Chain induced by any deterministic stationary policy consists of a single recurrent
class plus a –possibly empty– set of transient states (i.e., there exists a subset of states that are
visited infinitely often with probability 1 independently of the starting state)

2for all state s, action a and measurable subset B of the state space, P(B|x, a) ≥ ϵµ(B)
3for every pair of states (s, s′), there exists an action a making s′ accessible from s
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Ergodic control – Sketch of the proof (existence)
We use a contraction argument directly on the dynamics (not on the
Bellman Operator):
Let dH be the Hilbert’s projective metric defined as

dH(u, v) = max
1≤i,j≤n

log
(

ui

vi

vj

uj

)
.

Under (A1) – (A2), (D, dH) is a complete metric space.

Birkhoff theorem

Every matrix Q � 0 is a contraction in Hilbert’s projective metric, i.e.,

∀µ, ν ∈ (RN
>0), dH(µQ, νQ) ≤ κQdH(µ, ν) ,

where κQ := tanh (DiamH(Q) / 4) < 1.

We then use the method of vanishing discount approach (Lions et al., 1987):
→ the family of α-discounted objective function (Vα(·))α is

equi-Lipschitz, which entails the existence of the eigenvector by a
compactness argument.
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Section 2

Algorithms

1 Definition of the model

2 Algorithms
Relative Value Iteration
Policy Iteration
Numerical results

3 Application to electricity pricing
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Relative Value Iteration with Krasnoselskii-Mann
damping
� Regular grid Σ of the simplex ∆K

N ,
� Bellman Operator BΣ using Freudenthal
triangulation (Lovejoy, 1991).

Algorithm RVI with Mann-type iterates

Require: Σ, BΣ, ĥ0

1: vmax ← −∞
2: Initialize ĥ = ĥ0, ĥ′(µ) = BΣ ĥ
3: while sp(ĥ′ − ĥ) > ϵ do
4: ĥ← ( ĥ′ −max{ĥ′}e + ĥ )/2

5: ĥ′(µ̂)← (BΣ ĥ)(µ̂) for all µ̂ ∈ Σ
6: end while
7: ĝ← (max(ĥ′ − ĥ) + min(ĥ′ − ĥ) )/2
8: return ĝ, ĥ

µ1

µ2

µ3

Proposition (Gaubert and Stott, 2020)

Convergence time of RVI = O(ε−2)
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Policy Iteration
� Regular grid Σ of the simplex ∆K

N ,
� Bellman Operator BΣ using semi-lagrangian
discretization.

On-the-fly generation of transitions, refining (C.-
Terrasson et al., 1998).
↪→ solve the spectral problem

max
1≤j≤n

(Aij + xj) = λ+ xi .

↪→ the transition is decomposed on each segment µ1

µ2

µ3

Example

A =


1 2 0 7
0 3 5 0

0 4 0 3
0 2 8 0


21

34

1
2

7 5

3

4
3

8

2

Proposition

PI has finite time
convergence
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Numerical results

Instance4 (node, arcs) RVI-KM PI5 This work6

K = 2,N = 2 (7.4 105, 6.9 108) 7h 390s 70s
δµ = 1/50 15Mo 13Go 103Mo

4K: segments, N: contracts, δµ: discretization’s precision (for each dimension)
5Cochet-Terrasson et al., 1998
6Each method ran on a 10 threads on a laptop i7-1065G7 CPU@1.30GHz.
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Section 3

Application to electricity pricing

1 Definition of the model

2 Algorithms

3 Application to electricity pricing
Electricity pricing
Steady-states
Impact of switching costs
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And if consumers do not immediately react ?

Intuition (Dubé et al., 2010; Horsky and Pavlidis, 2010)
“I switch to a new contract if there is a sufficient difference
with my current offer.”

Image from https://www.sketchbubble.com/en/presentation-switching-costs.html
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Model
An electricity provider has N−1 different types of offers.
Given k and an offer n ∈ [N−1], we know

Reservation price Rkn: max. price that k want to spend on n,
Energy consumption Ekn: fixed consumption if k chooses n,
Utility Ukn(a) := Rkn − Eknan, where an is the price for one unit of n.

Consumers have an alternative option (state of index N):
→ fixed offer over time (regulated contract) with UkN = 0.

The (linear) reward for the provider is then
θkn(a) = Eknan︸ ︷︷ ︸

electricity invoice

− Ckn︸︷︷︸
cost

, n < N, θkN = 0 .

Assumption: The transition probability follows a logit response, see
e.g. Pavlidis and Ellickson, 2017:

[Pk(a)]n,m =
eβ[Ukm(a)+γkn 1m=n]∑
l∈[N] eβ[Ukl(a)+γkn 1l=n]

,

γkn is the cost for segment k to switch from contract n to another one,
β is the intensity of the choice (it can represent a “rationality
parameter”).
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Steady-states

Theorem

Given a constant action a, the distribution sequence
(
µk

t
)

t converges to
µk(a), defined as

µkn(a) = ηkn(a)µkn
L (a)∑

l∈[N] η
kl(a)µkl

L (a)
. (1)

where ηkn(a) := 1 +
[
eβγ

kn
− 1

]
µkn

L (a), and

µkn
L = eβUkn(a) /

∑
l∈[N]

eβUkl(a) . (2)

As a consequence, the optimal steady-state can be found by solving the
static problem

g = max
a∈A

r(a, µ(a)) . (3)
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Impact of switching costs γ on toy model

low γ high γ

“Turnpike” like strategy:
Attraction to a steady-state

Cyclic strategy:
A promotion is periodically applied
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(a) Optimal finite horizon trajectory (provider
action and customer distribution) for low
switching cost.

0 5 10 15 20 25
0.10

0.15

0.20

Pr
ic

e
C

/k
W

h

Opt. policy
S. state a

0 5 10 15 20 25
Time steps (month)

0.4

0.6

0.8

D
is

tr
ib

ut
io

n
µ

Opt. policy
S. state µ

(b) Optimal finite horizon trajectory (provider
action and customer distribution) for high
switching cost.

↪→ Confirms optimality of periodic promotions, already observed in
Economics, see e.g. Horsky and Pavlidis, 2010.
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(a) Optimal decision for the long-run average
reward (provider action and next customer
distribution)
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Conclusion and Perspectives

Conclusion
� Resolution of deterministic lifted MDP using a eigenproblem
representation

� Refinement of Policy Iteration for Heterogeneous populations
� Application to electricity pricing, and highlight of the switching cost’s
impact

Perspectives
� Conditions for the convergence to a steady-state
� Links between dissipativity condition (control theory) and strict
subsolutions (weak-KAM theory)

� Study of other transitions (non logit-based)
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