DAGSTUHL SEMINAR

Bilevel optimization for the retail electricity market

Quentin Jacquet^{a,b} Wim Van Ackooij^a, Clémence Alasseur^a, Stéphane Gaubert^b

^aOSIRIS, EDF Lab, 91120 Palaiseau, France b_{INRIA}, CMAP, Ecole Polytechnique, 91120, Palaiseau, France

Innia

Introduction	Leader-Follower	Demand Elasticity	Dynamic extension	Perspectives
000000	0000000000	00000	00000	000
TABLE OF CO	ONTENTS			

INTRODUCTION

2 LEADER-FOLLOWER

- Deterministic model
- Logit regularization
- Quadratic regularization

3 DEMAND ELASTICITY

- · Elasticity of the demand
- Distortion of the Polyhedral Complex
- Linear Reformulation

DYNAMIC EXTENSION

- Switching costs
- Ergodic control

5 PERSPECTIVES

INTRODUCTION

INTRODUCTION O00000	Leader-Follower	Demand Elasticity 00000	Dynamic extension 00000	Perspectives
A WIDE VARIE	TY OF OFFERS			

♦ Since 2007, French electricity market is open to competition :

INTRODUCTION	LEADER-FOLLOWER	Demand Elasticity	DYNAMIC EXTENSION	PERSPECTIVES
00000	000000000	00000	00000	000
A WIDE VARIETY OF OFFERS				

♦ Since 2007, French electricity market is open to competition :

Market Offers Company freely determines the prices Regulated Offers Fixed prices

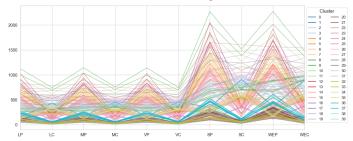
♦ Contracts structure:

W contracts

	Baseload version	Peak/Off-peak version	
Variable portion	unique price	peak price	
(€/kWh)	unique price	off-peak price	
Fixed portion (€)	power	power	

H attributes (2 or 3)

♦ Load curves¹ of customers reflect different consumption behaviors:



Consumption preferences change

Digital ("Digiwatt"), Green ("Vert Electrique") Self-consumption (solar panel, batteries, ...)

Assumption: The population can be aggregated into S customers segments.

¹We use simulated load curves, from SMACH.

INTRODUCTION	Leader-Follower	Demand Elasticity	Dynamic extension	Perspectives
000000		00000	00000	000
CHALLENGE				

Issue

How to determine fair prices to attract/keep customers while secure a sufficient profit ?

Leader-follower game:

- ♦ First player (*leader*) decides
- ♦ Second player (*follower*) reacts

Multi-leader-common-followers game [LM10]

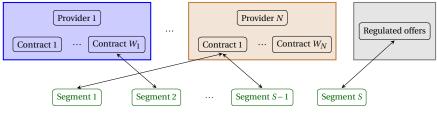


Figure: Representation of the problem

- Nash equilibrium at upper level
- Envy-Free: no limitation on the maximum number of customers able to purchase the same contract

Leader-follower game (Stackelberg)

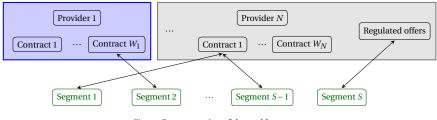


Figure: Representation of the problem

- \diamond *Nash equilibrium at upper level* \rightarrow static competition
- Envy-Free: no limitation on the maximum number of customers able to purchase the same contract

INTRODUCTION	Leader-Follower	Demand Elasticity	DYNAMIC EXTENSION	Perspectives
000000	0000000000	00000	00000	000
Focus on	STATIC COMPETITI	ON		

Leader-follower game (Stackelberg)

General formulation of Bilevel problems [Dem+15]

$$\begin{cases} \underset{x}{\overset{\text{"min"}}{x}} F(x, y) & \leftarrow \text{"Upper level"} \\ \text{s.t } x \in X \\ y \in \Psi(x) := \underset{y}{\operatorname{Argmin}} \{f(x, y); g(x, y) \le 0\} & \leftarrow \text{"Lower level"} \end{cases}$$

- ♦ *x* is called "Upper variable", controlled by the leader
- ♦ *y* is called "Lower variable", controlled by the follower

Complexity results

Linear Bilevel problems are NP-Hard [Jer85].

LEADER-FOLLOWER GAMES

[Jac+21]

Introduction	LEADER-FOLLOWER	Demand Elasticity	Dynamic extension	Perspectives
000000		00000	00000	000
Determini	STIC MODEL			

Notations:

- $[S] := \{1 \dots S\}$ customers segments,
- ♦ [W] contracts of the leader,
- ♦ [H] attributes per contract

Variables:

Data:

- $\diamond C_{sw}$ cost to supply *s* if he chooses *w*,
- ♦ *R_{sw} reservation price* of *s* for contract *w*,
- ♦ Customer invoice is a *linear form* of the prices

$$\theta_{sw}(\mathbf{x}) := \langle E_{sw}, \mathbf{x}_w \rangle_H$$

Deterministic bilevel problem

$$\max_{x \in X, \mu^*} \sum_{s \in [S]} \rho_s \langle \theta_s(x) - C_s, \mu_s^* \rangle_W \rightarrow \text{leader pb}$$

s.t.
$$\mu^* \in \underset{\mu \in (\Delta_{W+1})^S}{\operatorname{argmin}} \left\{ \sum_{s \in [S]} \langle \theta_s(x) - R_s, \mu_s \rangle_W \right\}$$
$$\longrightarrow \text{ follower pb}$$

Profit function

$$\pi(\mathbf{x}) := \sum_{s \in [S]} \rho_s \langle \theta_s(\mathbf{x}) - C_s, \mu_s^*(\mathbf{x}) \rangle_W ,$$

where $\mu^*(\cdot)$ is the optimal follower response.

Introduction	Leader-Follower	Demand Elasticity	Dynamic extension	Perspectives
000000		00000	00000	000
KKT TRANSF	ORMATION			

The follower problem is linear, and can be replaced by KKT conditions:

$$\max_{\boldsymbol{x} \in \boldsymbol{X}, \boldsymbol{\mu}, \boldsymbol{\eta}} \sum_{\boldsymbol{s} \in [S]} \rho_{s} \eta_{s} + \rho_{s} \langle \boldsymbol{R}_{s} - \boldsymbol{C}_{s}, \boldsymbol{\mu}_{s} \rangle_{W}$$
s.t.
$$0 \leq \mu_{sw} \perp \theta_{sw}(\boldsymbol{x}) - \boldsymbol{R}_{sw} - \eta_{s} \geq 0, \forall s, w$$

$$0 \leq \mu_{s0} \perp \eta_{s} \leq 0, \forall s$$

$$\mu_{s} \in \Delta_{W+1}, \forall s$$

This leads to a Linear Program under Complementarity Constraints (LPCC).

Usually, we replace the complementarity constraints by Big-*M* constraints ~> MILP formulation, generalization of [STM11; Fer+16].

One customer (S = 1), 2 contracts (W = 2)

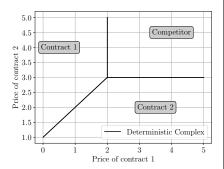


Figure: Response of follower in the space of prices

(developped in [BK19; Eyt18])

Five customers (S = 5), 1 contract (W = 1)

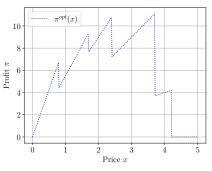


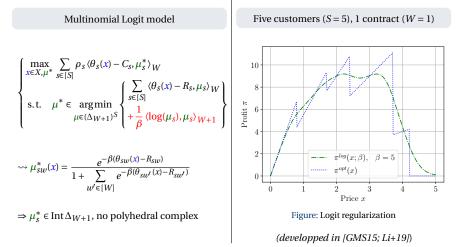
Figure: Instability in the profit function

(developped in [GMS15])

Proposition [Jac+21]

In the general case, the optimal profit is achieved at a discontinuity.

Introduction	LEADER-FOLLOWER	Demand Elasticity	Dynamic extension	Perspectives
000000		00000	00000	000
LOGIT REGU	JLARIZATION			



Proposition [Li+19]

For a heterogeneous population (S > 1), π is in general non-concave.

Introduction 000000	Leader-Follower	Demand Elasticity 00000	Dynamic extension 00000	Perspectives 000
QUADRA	ATIC REGULARIZATION (1)		
	Multinomial Logit model		Quadratic model	
$\begin{cases} \max_{x \in X, \mu^*} \\ s. t. \mu^* \end{cases}$	$\sum_{\substack{\varepsilon \in [S] \\ \varepsilon \in [S]}} \rho_{s} \langle \theta_{s}(x) - C_{s}, \mu_{s}^{*} \rangle_{W}$ $^{*} \in \operatorname{argmin}_{\mu \in (\Delta_{W+1})^{S}} \begin{cases} \sum_{s \in [S]} \langle \theta_{s}(x) - R_{s}, \mu_{s} \rangle_{W}, \\ + \frac{1}{\beta} \langle \log(\mu_{s}), \mu_{s} \rangle_{W}. \end{cases}$	$\begin{cases} \max_{x \in X, \mu} \sum_{s \in [S]} \\ s.t. \ \mu^* \end{cases}$	$\rho_{S} \langle \theta_{S}(x) - C_{S}, \mu_{S}^{*} \rangle_{W}$ $ \epsilon \operatorname{argmin}_{\mu \in (\Delta_{W+1})^{S}} \begin{cases} \sum_{s \in [S]} \langle \theta_{s}(x) - R_{s} \rangle_{W} \\ + \frac{1}{\beta} \langle \mu_{s} - 1, \mu_{s} \rangle_{W} \end{cases}$	$\left. \left. \left$
$\rightsquigarrow \mu^*_{sw}(x)$	$= \frac{e^{-\beta(\theta_{sw}(x) - R_{sw})}}{1 + \sum_{u' \in [W]} e^{-\beta(\theta_{su'}(x) - R_{su'})}}$	$\rightsquigarrow \mu_{\mathcal{S}}^*(\mathbf{x}) = 1$	$\operatorname{Proj}_{\Delta_{W+1}}\left(\frac{\beta}{2}\left(R_{s}-\theta_{s}(x)\right)\right)$	
		→ powerfu simplex, se	ull algorithm for projection (e [Con16]	on the

One customer (S = 1), 2 contracts (W = 2)

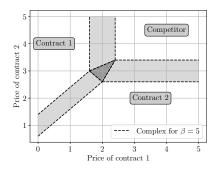


Figure: Response of follower in the space of prices

Five customers (S = 5), 1 contract (W = 1)

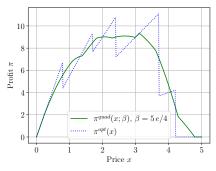


Figure: Quadratic regularization

Theorem [Jac+21]

The profit π is *continuous*. Moreover, it is *concave* on each cell of the polyhedral complex.

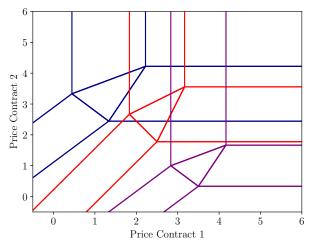


Figure: Example with S = 3 segments and W = 2 contracts

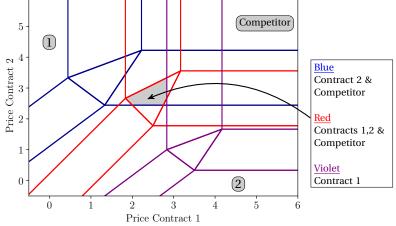


Figure: Example with S = 3 segments and W = 2 contracts

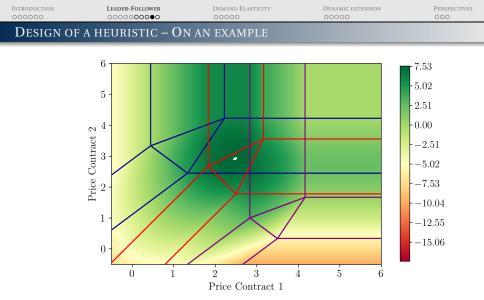
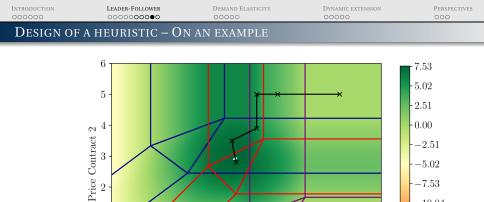


Figure: Example with S = 3 segments and W = 2 contracts



2

Ś.

Price Contract 1 Figure: Example with S = 3 segments and W = 2 contracts

1

0

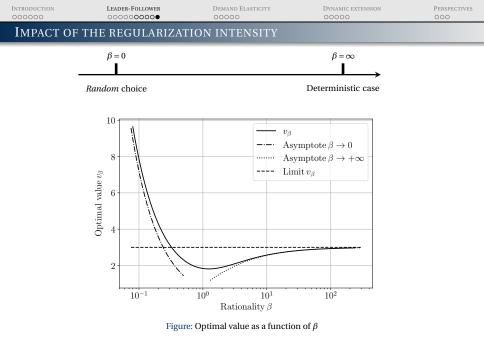
Ó

-5.02-7.53-10.04

-12.55-15.06

5

6



DEMAND ELASTICITY

(Ongoing research)

AND IF CONSUMERS <i>adapt</i> THEIR CONSUMPTION TO PRICE	
000000 00000000 00000 00000	000
INTRODUCTION LEADER-FOLLOWER DEMAND ELASTICITY DYNAMIC EXT	TENSION PERSPECTIVES

"If the electricity is too costly, I will reduce my consumption."

 \hookrightarrow Isoelastic utility function of the electricity demand (CRRA):

$$U_s : E \in \mathbb{R}^H \mapsto \sum_{h \in [H]} \alpha_s^h \frac{(E^h)^{\eta}}{\eta}, \ \eta \in \underbrace{]-\infty, 0[}_{\text{residential}} \cup \underbrace{]0, 1[}_{\text{industrial}}$$

AND IF CONSUMERS <i>adapt</i> THEIR CONSUMPTION TO PRICES ?							
000000	000000000	0000	00000	000			
INTRODUCTION	LEADER-FOLLOWER	DEMAND ELASTICITY	DYNAMIC EXTENSION	PERSPECTIVES			

"If the electricity is too costly, I will reduce my consumption."

 \hookrightarrow Isoelastic utility function of the electricity demand (CRRA):

$$U_{s}: E \in \mathbb{R}^{H} \mapsto \sum_{h \in [H]} \alpha_{s}^{h} \frac{(E^{h})^{\eta}}{\eta}, \eta \in \underbrace{]-\infty, 0[}_{\text{residential}} \cup \underbrace{]0,1[}_{\text{industrial}}$$

→ The customer *not only* decides the contract, but also maximizes

$$U_{s}^{*}: x \in \mathbb{R}^{H} \mapsto \max_{E \in \mathbb{R}^{H}} \{U_{s}(E) - \langle x, E \rangle_{H}\}$$

The optimal energy consumption is $\mathscr{E}^h_{\mathcal{S}}(x^h) = \left(\frac{\alpha^h_{\mathcal{S}}}{x^h}\right)^{\frac{1}{1-\eta}}$.

AND IF CONSUMERS <i>adapt</i> THEIR CONSUMPTION TO PRICES ?					
000000	000000000	0000	00000	000	
INTRODUCTION	LEADER-FOLLOWER	DEMAND ELASTICITY	DYNAMIC EXTENSION	PERSPECTIVES	

"If the electricity is too costly, I will reduce my consumption."

 \hookrightarrow Isoelastic utility function of the electricity demand (CRRA):

$$U_{s}: E \in \mathbb{R}^{H} \mapsto \sum_{h \in [H]} \alpha_{s}^{h} \frac{(E^{h})^{\eta}}{\eta}, \eta \in \underbrace{]-\infty, 0[}_{\text{residential}} \cup \underbrace{]0,1[}_{\text{industrial}}$$

→ The customer *not only* decides the contract, but also maximizes

$$U_{\mathcal{S}}^*: \mathbf{x} \in \mathbb{R}^H \mapsto \max_{E \in \mathbb{R}^H} \{ U_{\mathcal{S}}(E) - \langle \mathbf{x}, E \rangle_H \}$$

The optimal energy consumption is $\mathscr{E}^h_s(x^h) = \left(\frac{\alpha^h_s}{x^h}\right)^{\frac{1}{1-\eta}}$.

 \hookrightarrow The invoice is now a *nonlinear* function:

$$\theta_{sw}(\underline{x_w}) := \langle \check{E}_{sw}, \underline{x_w} \rangle_H \to \Theta_s(\underline{x_w}) := \langle \mathscr{E}_s(\underline{x_w}), \underline{x_w} \rangle_H$$

Remark: We recover the inelastic case for $\eta \rightarrow -\infty$.

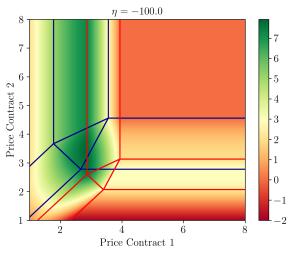


Figure: Example with S = 2 segments and W = 2 contracts

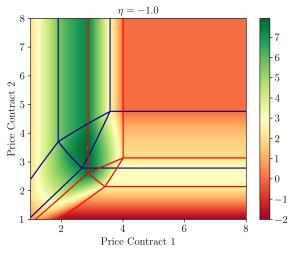


Figure: Example with S = 2 segments and W = 2 contracts

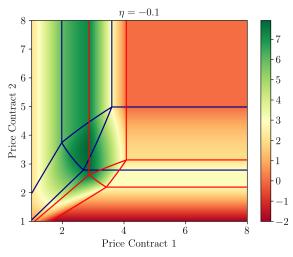


Figure: Example with S = 2 segments and W = 2 contracts

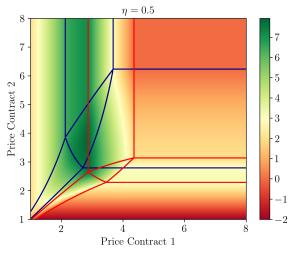


Figure: Example with S = 2 segments and W = 2 contracts

Retrieving a Polyhedral Complex (first order cost)				
000000	000000000	00000	00000	000
INTRODUCTION	LEADER-FOLLOWER	DEMAND ELASTICITY	DYNAMIC EXTENSION	PERSPECTIVES

Proposition

Suppose that the price constraints are of the following form

$$X = \mathcal{O}_{(\underline{x},\overline{x},\kappa)}(P) := \left\{ x_w^h \in [\underline{x}_w^h, \overline{x}_w^h] \; \middle| \; x_w^h \le \kappa_w^h x_{w'}^{h'} \text{ for } (w,h) \le_P (w',h') \right\} \; ,$$

where P is a partial order set. Then, the bilevel problem

$$\max_{\mathbf{x}\in X,\mu^*} \sum_{s\in[S]} \rho_s \langle \Theta_s(x) - C_s, \mu_s \rangle_W$$

s.t. $\mu^* \in \underset{\mu \in (\Delta_{W+1})^S}{\operatorname{argmin}} \left\{ \sum_{s\in[S]} \langle \Theta_s(x_w) - R_s, \mu_s \rangle_W \right\}$,

can be equivalently defined using variables $z_w^h := (x_w^h)^{-\frac{\eta}{1-\eta}}$

 $X \longrightarrow Z$

nonlinear price complex polyhedral complex

The retailer cost is not constant anymore, but depends on the total consumption:

$$\underbrace{\max_{x \in X, \mu^*} \sum_{s \in [S]} \rho_s \langle \Theta_s(x) - C_s, \mu_s^* \rangle_W}_{x \in X, \mu^*} \rightarrow \max_{x \in X, \mu^*} \sum_{s \in [S]} \rho_s \langle \Theta_s(x), \mu_s^* \rangle_W - C \left(\sum_{s \in [S]} \rho_s \sum_{w \in [W]} \mathcal{C}_s(x_w) \mu_{sw}^* \right)_{x \in X, \mu^*} = \mathcal{E}^{\text{tot}}(x, \mu^*) \text{ (total consumption)}$$

with $C(\cdot)$ a convex nondecreasing function.

Proposition

In the Z space,

- ♦ the energy consumption $z_w \mapsto \mathscr{E}_s(z_w)$ is always *convex*,
- ♦ the total energy $z \mapsto e^{\text{tot}}(z, \mu^*(z))$ is *convex* on each cell for a sufficiently large regularization intensity $β^{-1}$.

DYNAMIC EXTENSION

[Jac+22]

000000	000000000	00000	0000	000	
AND IF CONSUMERS <i>do not immediately</i> REACT ?					

"I switch to a new contract if there is a *sufficient* difference with my current offer."

This notion is known is Economics:

↔ Customers have *switching costs* (imperfect market), see e.g. [DHR10; HP10]

MADKOVIAN D	ECISION PROCESS	00000	0000	000
INTRODUCTION	LEADER-FOLLOWER	DEMAND ELASTICITY	DYNAMIC EXTENSION	PERSPECTIVES

Modelization as a Markovian Decision Process (MDP)

 $\mu_{t+1} = \mu_t P(\mathbf{x}_t),$

where $P(x_t)$ is the transition matrix, obtained by solving the *lower* problem knowing the *upper* decision x_t at time t.

We choose a logit transition

$$P(x_t) = diag(\{P(x_t)_s\}_{s \in [S]}), \quad [P_s(x_t)]_{(v,w)} = \frac{e^{\beta(R_{sw} - \theta_{sw}(x_t)) + \gamma_{sv} \mathbb{1}_{(w=v)}}}{1 + \sum_{w' \in [W]} e^{\beta(R_{sw'} - \theta_{sw'}(x_t)) + \gamma_{sv} \mathbb{1}_{(w'=v)}}}$$

 $\rightsquigarrow \gamma_{sw}$ is the switching cost the customer *s* would pay if he switches to another offer.

- ♦ The previous (static) model is recover when $\gamma \equiv 0$.
- ♦ $P(x) \gg 0$ for all *x*, and we can define *D* such that

$$\mu_t \in \mathcal{D} \subset \operatorname{relint}\left(\Delta_W^S\right), t \ge 1$$
.

ERGODIC C	000000000	00000	00000	000
INTRODUCTION	LEADER-FOLLOWER	Demand Elasticity	DYNAMIC EXTENSION	PERSPECTIVES

For a policy $\pi = {\pi_t}_{t \ge 1}$, $x_t = \pi_t(\mu_t)$ is the action taken by the controller at *t*. Now, we aim to maximize the *average long-term reward*, i.e.,

$$g^* = \sup_{\pi \in \Pi} \liminf_{T \to \infty} \frac{1}{T} \sum_{t=1}^T r(\pi_t(\mu_t), \mu_t) \quad , \tag{1}$$

where $r(\cdot, \cdot)$ is the objective defined in the static model.

For any function $v: \Delta_W^S \to \mathbb{R}$, the Bellman operator \mathscr{B} is defined as

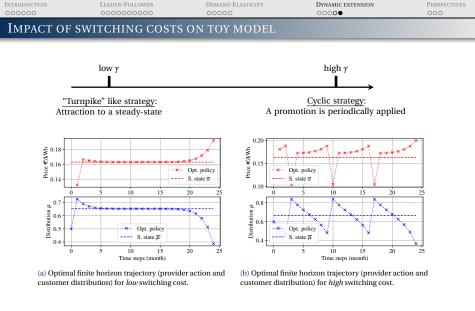
 $\mathcal{B}v(\mu) = \max_{x \in X} \{r(x,\mu) + v(\mu P(x))\} \ .$

Theorem [Jac+22]

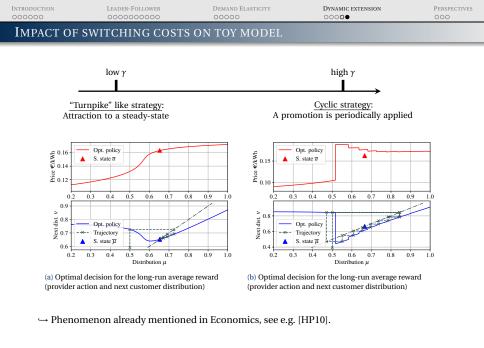
Assume that $x \mapsto P_s(x)$ is continuous and $P_s(x) \gg 0$ for all x and $s \in [S]$. Then, the ergodic eigenproblem

$$g \mathbb{1}_{\mathscr{D}} + h = \mathscr{B} h$$

admits a solution $g^* \in \mathbb{R}$ and h^* Lipschitz and convex on \mathcal{D} . Moreover, g^* satisfies (1), and a maximizer $x^*(\cdot) \in \operatorname{argmax} \mathscr{B} h^*$ defines an optimal policy for the average gain problem.



 \hookrightarrow Phenomenon already mentioned in Economics, see e.g. [HP10].



INTRODUCTION	Leader-Follower	Demand Elasticity	DYNAMIC EXTENSION	Perspectives
000000	000000000	00000	00000	●OO
Perspectives				

Future works

- Analyze of turnpike property for the dynamic extension
- ♦ Definition of continuous-time model
- Competition at the upper level (between leaders)

Introduction 000000	Leader-Follower	Demand Elasticity 00000	Dynamic extension 00000	Perspectives ○●●
Reference	s I			
[Jer85]		polynomial hierarchy and a <u>mming</u> 32.2 (June 1985), pp.	simple model for competitive 146–164.	analysis".
[DHR10]			i. "State dependence and alter urnal of Economics 41.3 (Aug	
[HP10]	Dan Horsky and Polykarp Investigation". In: <u>SSRN I</u>		induced Price Promotions: An	Empirical
[LM10]		unson. "Solving multi-leade nd Software 25.4 (Aug. 2010)	er-common-follower games". I), pp. 601–623.	In:
[STM11]		ervation price". In: <u>Computa</u>	tility product pricing models a ational Optimization and Appl	
[Dem+15]		slav Kalashnikov, Gerardo A Silevel Programming Probler	. P <mark>érez-Valdés, and</mark> <u>ns</u> . Springer Berlin Heidelberş	g, 2015.
[GMS15]			. "A Numerical Study of the Lo <u>ee</u> 49 (Jan. 2015), p. 150105061	
[Con16]		ojection onto the Simplex ar ing, Series A 158.1 (July 2010		
[Fer+16]	envy-free pricing problem		nco, and Rafael CS Schouery. d connections with the netwo 41–161.	

INTRODUCTION	Leader-Follower	Demand Elasticity	Dynamic extension	Perspectives
000000		00000	00000	OOO
References II				

[Eyt18]	Jean-Bernard Eytard. "A tropical geometry and discrete convexity approach to bilevel programming: application to smart data pricing in mobile telecommunication networks". PhD thesis. Université Paris-Saclay (ComUE), 2018.
[BK19]	Elizabeth Baldwin and Paul Klemperer. "Understanding preferences:"demand types", and the existence of equilibrium with indivisibilities". In: <u>Econometrica</u> 87.3 (2019), pp. 867–932.
[Li+19]	Hongmin Li, Scott Webster, N. Mason, and K. Kempf. "Product-Line Pricing Under Discrete Mixed Multinomial Logit Demand". In: <u>Manuf. Serv. Oper. Manag.</u> 21 (2019), pp. 14–28.
[Jac+21]	Quentin Jacquet, Wim van Ackooij, Clémence Alasseur, and Stéphane Gaubert. <u>A Quadratic Regularization for the Multi-Attribute Unit-Demand Envy-Free Pricing Problem</u> . 2021.
[Jac+22]	Quentin Jacquet, Wim van Ackooij, Clémence Alasseur, and Stéphane Gaubert. Ergodic control of a heterogeneous population and application to electricity pricing, 2022.

THANK YOU FOR YOUR ATTENTION !