PGMO Days 2022

A Rank-Based Reward between a Principal and a Field of Agents: Application to Energy Savings

Clémence Alasseur, Erhan Bayraktar, Roxana Dumitrescu, Quentin Jacquet

November 30, 2022

Section 1

Introduction

- 1 Introduction
 - ContextRanking games
- 2 Agents' problem
- 3 Principal's problem
- 4 Numerical results
- 5 Conclusion

Context

Obligations imposed by governments:

⋄ In France: electricity providers ("Obligés") have a target of Energy Saving Certificates¹ to hold at a predetermined horizon (~ 3 years). If they fail, they face financial penalties.

Existing incentives "Provider \rightarrow customers":

- Comparison to similar customers
 - ⋄ EDF, Total, Engie, . . .
- Reward/Bonus when reduction compared to past consumption
 - ⋄ "SimplyEnergy"², "Plüm énergie"³, "OhmConnect"⁴

¹www.powernext.com/french-energy-saving-certificates

²www.simplyenergy.com.au/residential/energy-efficiency/reduce-and-reward

³www.plum.fr/cagnotte/

⁴www.ohmconnect.com/

Context

Obligations imposed by governments:

 In France: electricity providers ("Obligés") have a target of Energy Saving Certificates¹ to hold at a predetermined horizon (\simeq 3 years). If they fail, they face financial penalties.

Existing incentives "Provider \rightarrow customers":

- Comparison to similar customers
- EDF, Total, Engie, . . .
 Reward/Bonus when reduction compared to past consumption
 "SimplyEnergy"², "Plüm énergie"³, "OhmConnect"⁴
- → Ranking games: A reward based on the comparison between similar customers

¹www.powernext.com/french-energy-saving-certificates

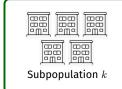
²www.simplyenergy.com.au/residential/energy-efficiency/reduce-and-reward

³www.plum.fr/cagnotte/

⁴www.ohmconnect.com/

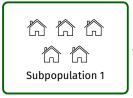
Ranking games

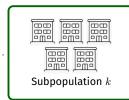
Subpopulation 1



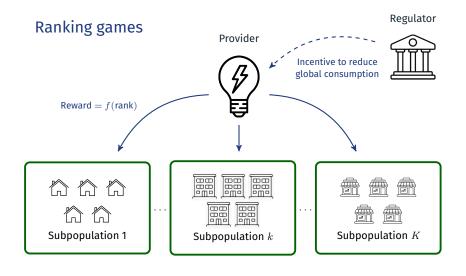
Mean-field assumption: Each subpopulation is composed of an infinite number of indistinguishable consumers

Ranking games

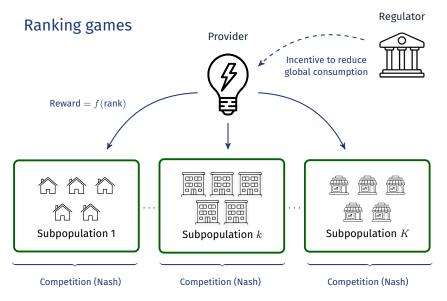




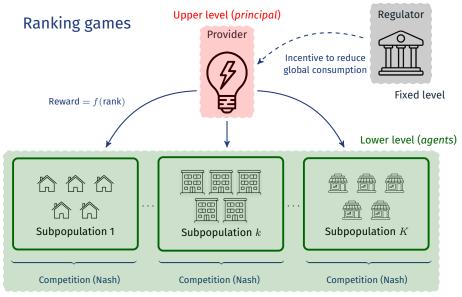
Mean-field assumption: Each subpopulation is composed of an infinite number of indistinguishable consumers



Mean-field assumption: Each subpopulation is composed of an infinite number of indistinguishable consumers



Mean-field assumption: Each subpopulation is composed of an infinite number of indistinguishable consumers



Mean-field assumption: Each subpopulation is composed of an infinite number of indistinguishable consumers

Section 2

Agents' problem

- Agents' problem
 A field of agents
 Rank-based reward

 - Mean-field game between consumers

A field of agents

- \diamond The population is divided into K clusters of indistinguishable consumers. Each cluster $k \in [K]$ represents a proportion ρ_k .
- $\diamond~X_k^a(t)$ the energy consumption of a customer of k, forecasted at time t for consumption at T>t:

$$X_k^a(t) = X_k(0) + \int_0^t a_k(s) ds + \sigma_k \int_0^t dW_k(s), \quad X_k(0) = x_k^{\mathsf{nom}}$$
, (1)

with

- $\circ \{W_k\}_{1 \le k \le K}$ a family of K independent Brownian motions
- $\circ \ a_k$ a progressively measurable process satisfying $\mathbb{E} \int_0^T |a(s)| ds < \infty$

A field of agents

- \diamond The population is divided into K clusters of indistinguishable consumers. Each cluster $k \in [K]$ represents a proportion ρ_k .
- $\diamond~X_k^a(t)$ the energy consumption of a customer of k, forecasted at time t for consumption at T>t :

$$X_k^a(t) = X_k(0) + \int_0^t a_k(s) ds + \sigma_k \int_0^t dW_k(s), \quad X_k(0) = x_k^{\mathsf{nom}} \ , \tag{1}$$

with

- $\circ \{W_k\}_{1 \le k \le K}$ a family of K independent Brownian motions
- $\circ \ a_k$ a progressively measurable process satisfying $\mathbb{E} \int_0^T |a(s)| ds < \infty$

Interpretation:

- $\diamond a_k$ is the consumer's *effort* to reduce his electricity consumption.
- \diamond Without effort ($a\equiv 0$), customers have a mean *nominal* consumption x_k^{nom} , and the terminal p.d.f. of $X_k^a(T)$ is:

$$f_k^{\mathsf{nom}}(x) := \varphi\left(x; x_k^{\mathsf{nom}}, \sigma_k \sqrt{T}\right) ,$$

where $\varphi(\cdot; \mu, \sigma)$ is the pdf for $\mathcal{N}(\mu, \sigma)$.

Rank-based reward

Assumption: The reward R has the form

$$\mathbb{R} \times [0,1] \ni (x,r) \mapsto R(x,r) = B(r) - px , \qquad (2)$$

- \diamond We call R the total reward and B the additional reward.
- $\diamond -px$ represents the *natural incentive* to reduce the consumption, coming from the price p to consume one unit of energy
- \diamond When R(x, r) is independent of x, the reward is purely ranked-based

Rank-based reward

Assumption: The reward R has the form

$$\mathbb{R} \times [0,1] \ni (x,r) \mapsto R(x,r) = B(r) - px , \qquad (2)$$

- \diamond We call R the total reward and B the additional reward.
- $\diamond -px$ represents the *natural incentive* to reduce the consumption, coming from the price p to consume one unit of energy
- \diamond When R(x, r) is independent of x, the reward is purely ranked-based

In the N-players game setting:

- \diamond each cluster k contains N_k players
- \diamond the *ranking* of a player *i*, consuming $X_k^i(\mathit{T})$, is measured by

$$\frac{1}{N_k} \sum_{j=1}^{N_k} \mathbb{1}_{X_k^j(T) \leq X_k^i(T)} \qquad \begin{pmatrix} \text{empirical cumulative} \\ \text{distribution} \end{pmatrix}$$

- ⇒ Low rank = good energy saver
- $\Rightarrow B(\cdot)$ should be a decreasing function

Mean-field game between consumers

Agents' problem:

$$V_k(R,\mu_k) := \sup_a \mathbb{E} \left[R_{\mu_k}(X_k^a(T)) - \underbrace{\int_0^T c_k a_k^2(t) dt}_{\text{cost of effort}} \right] \ , \tag{P^{cons}}$$

where $R_{\mu}(x) = R(x, F_{\mu}(x))$.

Mean-field game between consumers

Agents' problem:

$$V_k(R,\mu_k) := \sup_a \mathbb{E} \left[R_{\mu_k}(X_k^a(T)) - \underbrace{\int_0^T c_k a_k^2(t) \, dt}_{\text{cost of effort}} \right] \ , \tag{P^{cons}}$$

where $R_{\mu}(x) = R(x, F_{\mu}(x))$.

Interpretation:

- The cost corresponds to the purchase of new equipment (new heating installation, isolation, ...).
- \diamond In exchange, the consumer receives B(r), depending on his rank $r=F_{\mu_k}(x)$, where μ_k is the k-subpopulation's distribution.
- \diamond The quantity $V_k(R,\mu_k)$ is the *optimal utility* of an agent of k, *knowing* the provider's reward and the population distribution.

Agents' best response

Theorem (Bayraktar and Zhang, 2021,Proposition 2.1)

Given $R \in \mathcal{R}$ and $\tilde{\mu}_k \in \mathcal{P}(\mathbb{R})$, let

$$\beta_k(\tilde{\mu}) = \int_{\mathbb{R}} f_k^{\mathsf{nom}}(x) \exp\left(\frac{R_{\tilde{\mu}}(x)}{2c_k\sigma_k^2}\right) dx \quad (<\infty) \quad . \tag{3}$$

Then, the optimal terminal distribution μ_k^* of the player of cluster k has p.d.f.

$$f_{\mu_k^*}(x) = \frac{1}{\beta(\tilde{\mu}_k)} f_k^{\mathsf{nom}}(x) \exp\left(\frac{R_{\tilde{\mu}_k}(x)}{2c_k \sigma_k^2}\right) , \qquad (4)$$

and the optimal value is then $V_k(R, \tilde{\mu}_k) = 2c_k\sigma_k^2 \ln \beta_k(\tilde{\mu}_k)$

Definition: $\mu_k \in \mathcal{P}(R)$ is an equilibrium if it is a fixed-point of the best response map

$$\Phi_k: \tilde{\mu}_k \mapsto \mu_k^*$$
,

with μ_k^* given by (4).

Nash Equilibrium

For purely ranked-based reward (Bayraktar and Zhang, 2021, Theorem 3.2)

The equilibrium ν_k is unique and the quantile is given by

$$q_{\nu_k}(r) = x_k^{\mathsf{nom}} + \sigma_k \sqrt{T} N^{-1} \left(\frac{\int_0^r \exp\left(-\frac{B(z)}{2c_k \sigma_k^2}\right) dz}{\int_0^1 \exp\left(-\frac{B(z)}{2c_k \sigma_k^2}\right) dz} \right) . \tag{5}$$

Theorem

Let R(x,r)=B(r)-px. Then, the equilibrium μ_k is unique, and satisfies

$$q_{\mu_k}(r) = q_{\nu_k}(r) - \frac{pT}{2c_k}$$
, (6)

where ν_k is the (unique) equilibrium distribution for p=0 (purely ranked-based reward), defined in (5).

 \Rightarrow add of a linear part in "x" acts as a shift on the probability density function.

Section 3

Principal's problem

- 1 Introduction
- 2 Agents' problem
- Principal's problemRetailer's problem
- 4 Numerical results
- 5 Conclusion

Retailer's problem

For an equilibrium $(\mu_k)_{k\in [K]}$, the mean consumption is $m_{\mu_k}=\int_0^1 q_{\mu_k}(r)dr$, and the overall mean consumption is $m_\mu=\sum_{k\in [K]} \rho_k m_{\mu_k}$.

Principal's problem:

$$\max_{B \in \mathcal{R}_b^r} \left\{ s(m_\mu) + (p - c_r)m_\mu - \int_0^1 B(r)dr \middle| \begin{array}{c} \mu_k = \epsilon_k(B) \\ V_k(B) \ge V_k^{\mathsf{pi}} \end{array} \right\} \tag{P^{\mathsf{ret}}}$$

where

- $\diamond \ \mathcal{R}^r_b$ is the set of bounded and decreasing rewards,
- $\diamond \ \mu_k = \epsilon_k(B)$ the agents' equilibrium given additional reward $B(\cdot)$,
- $\diamond \ \ s(\cdot)$ denotes the valuation of the energy savings (given by regulator),
- \diamond c_r denotes the production cost of energy,
- $\diamond V^{\text{pi}}$ is the reservation utility (utility when $B \equiv 0$)

In the sequel, we denote by $g(\cdot)$ the function $g: m \mapsto s(m) - c_r m$.

Principal's problem:

$$\max_{B \in \mathcal{R}_b^r} \left\{ s\left(m_{\mu}\right) + (p - c_r)m_{\mu} - \int_0^1 B(r)dr \, \middle| \, \begin{array}{c} \mu = \epsilon(B) \\ V(B) \ge V^{\mathsf{pi}} \end{array} \right\} \tag{P^{ret}}$$

Principal's problem:

Idea:
$$\max_{\substack{B \in \mathcal{R}_b^r \\ \mu \text{ p.d.f}}} \left\{ s\left(m_{\mu}\right) + (p - c_r)m_{\mu} - \int_0^1 B(r)dr \, \left| \begin{array}{l} \mu = \epsilon(\tilde{B}) \\ V(B) \geq V^{\mathsf{pi}} \end{array} \right\} \right. \\ \left. + B \text{ bounded and decreasing} \right.$$

Principal's problem:

Idea:
$$\max_{\substack{B \in \mathcal{R}_b^r \\ \mu \text{ p.d.f}}} \left\{ s\left(m_{\mu}\right) + (p-c_r)m_{\mu} - \int_0^1 B(r)dr \, \left| \begin{array}{c} \mu = \varepsilon(B) \\ V(B) \geq V^{\mathsf{pi}} \end{array} \right\} \right. \\ \left. + B \text{ bounded and decreasing} \right.$$

Using the characterization of the equilibrium,

$$B_{\mu}(r) = V^{\mathsf{pi}} + 2c\sigma^{2} \ln \left(\zeta_{\mu}(q_{\mu}(r)) + pq_{\mu}(r) \right) \quad \left(= \epsilon^{-1}(\mu) \right) ,$$

with $\zeta_{\mu} := f_{\mu}/f^{\mathsf{nom}}$.

Reformulation in the distribution space:

$$\text{(P^{ret})} \begin{cases} \max_{\mu} & g\left(\int_{-\infty}^{+\infty} y f_{\mu}(y) dy\right) - V^{\text{pi}} - 2c\sigma^2 \int_{-\infty}^{+\infty} \ln\left(\frac{f_{\mu}(y)}{f^{\text{nom}}(y)}\right) f_{\mu}(y) dy \\ \text{s.t.} & \int_{-\infty}^{+\infty} f_{\mu}(y) dy = 1 \\ & y \mapsto \ln\left(\frac{f_{\mu}(y)}{f^{\text{nom}}(y)}\right) + \frac{p}{2c\sigma^2} y \text{ bounded and decreasing} \end{cases}$$

Principal's problem:

Idea:
$$\max_{\substack{B \in \mathcal{R}_b^r \\ \mu \text{ p.d.f}}} \left\{ s\left(m_{\mu}\right) + (p-c_r)m_{\mu} - \int_0^1 B(r)dr \, \left| \begin{array}{c} \mu = \varepsilon(B) \\ V(B) \geq V^{\mathsf{pi}} \end{array} \right\} \right. \\ \left. + B \text{ bounded and decreasing} \right.$$

Using the characterization of the equilibrium,

$$B_{\mu}(r) = V^{\mathsf{pi}} + 2c\sigma^2 \ln\left(\zeta_{\mu}(q_{\mu}(r))\right) + pq_{\mu}(r) \qquad \left(=\epsilon^{-1}(\mu)\right) ,$$

with $\zeta_{\mu} := f_{\mu}/f^{\mathsf{nom}}$.

Reformulation in the distribution space:

Relaxation

$$(P^{\text{ret}}) \begin{cases} \max_{\mu} & g\left(\int_{-\infty}^{+\infty} y f_{\mu}(y) dy\right) - V^{\text{pi}} - 2c\sigma^2 \int_{-\infty}^{+\infty} \ln\left(\frac{f_{\mu}(y)}{f^{\text{nom}}(y)}\right) f_{\mu}(y) dy \\ \text{s. t.} & \int_{-\infty}^{+\infty} f_{\mu}(y) dy = 1 \\ & \underbrace{y \mapsto \ln\left(\frac{f_{\mu}(y)}{f^{\text{nom}}(y)}\right)}_{\text{prom}(y)} + \underbrace{\frac{p}{2c\sigma^2} y \text{ bounded and decreasing}}_{\text{power}} \end{cases}$$

Assumption: The function $s: \mathbb{R} \to \mathbb{R}$ is supposed to be decreasing, concave and differentiable with $||s'(m)|| \leq M_s$.

Lemma

The optimal distribution μ^* for $(\widetilde{P}^{\rm ret})$ satisfies the following equation:

$$f_{\mu}(y) \propto f^{\mathsf{nom}}(y) \exp\left(y \frac{g'(m_{\mu})}{2c\sigma^2}\right)$$
 (7)

Sketch of proof: Use Karush-Kuhn-Tucker conditions, sufficient for $(\widetilde{P}^{\text{ret}})$

Theorem

Let $\delta(m)=p-c_r+s'(m)$. The distribution $\mu^*\hookrightarrow\mathcal{N}(m^*,\sigma\sqrt{T})$, where m^* satisfies

$$m - x^{\mathsf{p}\mathsf{j}} = \frac{T}{2c}\delta(m) , \qquad (8)$$

is optimal for $(\widetilde{P}^{\text{ret}})$. Moreover, the associated reward B^* is

$$B^*(r) = \frac{c}{r} \left[(x^{\mathsf{pi}})^2 - (m^*)^2 \right] + q_{\mu^*}(r)\delta(m^*) . \tag{9}$$

Remark: The function $\delta(\cdot)$ is viewed as the *reduction desire* of the provider.

Section 4

Numerical results

- 4 Numerical results
 - AlgorithmInstance

 - Results

Algorithm

$\begin{array}{c} \mathbb{R}^{N} \\ \mathbb{R}$

Restriction to piecewise linear reward:

- $\diamond \ \ \text{For} \ N \in \mathbb{N} \text{,} \ \Sigma_N := \{0 = \eta_1 < \eta_2 < \ldots < \eta_N = 1\} \text{.}$
- \diamond For $M \in \mathbb{R}_+$, we define the class of bounded piece-wise linear rewards adapted to Σ_N as

$$\widehat{\mathcal{R}}_M^N := \left\{ r \in [0,1] \mapsto \sum_{i=1}^{N-1} \mathbbm{1}_{r \in [\eta_i, \eta_{i+1}[} \left[b_i + \frac{b_{i+1} - b_i}{\eta_{i+1} - \eta_i} (r - \eta_i) \right] \; \middle| \; b \in [-M, M]^N \right\} \; .$$

 $\diamond \ R_M^N(b)$ is the reward function obtained as a linear interpolation of b.

Optimization by a black-box solver:

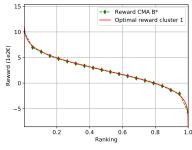
- \diamond We construct an oracle $b \in \mathbb{R}^N \mapsto \pi^{\, \mathrm{ret}}(b)$, where $\pi^{\, \mathrm{ret}}(b)$ is the retailer objective.
- ♦ We use a black-box solver, here CMA-ES (Hansen, 2006).

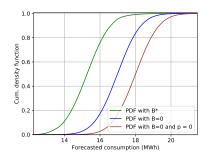
Instance

Parameter	Segment 1	Segment 2	Unit
T	3		years
p	0.17		€/kWh
c_r	0.15		€/kWh
X(0)	18	12	MWh
σ	0.6	0.3	MWh
c	2.5	5	\in [MWh] ⁻² [years] ²
s	$m \mapsto 0.1 m^2$		€
ρ	0.5	0.5	-

Table: Parameters of the instance

Results – K = 1





- (a) Analytic optimal reward in red, compared to the reward function found by CMA
- (b) Comparison of the three CDF: nominal, price incentive and with the optimal reward

Figure: Optimization in the homogeneous case

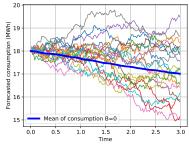
Consumption reduction:

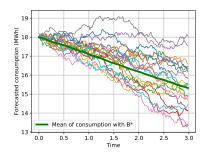
 \diamond Nominal consumption: $x^{\text{nom}} = 18 \text{ MWh}$

 \diamond With only price incentive: $x^{pi} = 17 \text{ MWh}$

 \diamond With optimal reward B^* : m=15.4 MWh

Results – K = 1





- (a) Trajectories without additional reward
- (b) Trajectories with optimal control from mean-field approximation

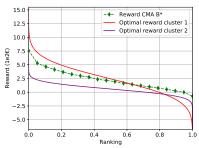
Figure: Trajectories for 20 consumers (homogeneous case)

Consumption reduction:

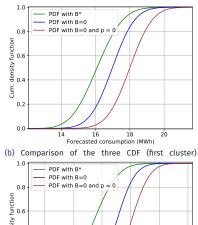
 \diamond Nominal consumption: $x^{\mathsf{nom}} = 18 \text{ MWh}$ \diamond With only price incentive: $x^{\mathsf{pi}} = 17 \text{ MWh}$

♦ With only price incentive: $x^{pi} = 17 \text{ MWh}$ ♦ With optimal reward B^* : m = 15.4 MWh

Results – K > 1



(a) Red and purple rewards are the optimal reward in the homogeneous case. The reward function found by CMA is displayed in green.



1.0 PDF with B*
PDF with B=0
PD

(c) Comparison of the three CDF (second cluster)

Figure: Optimization in the heterogeneous case

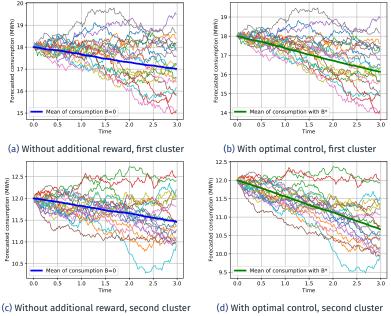


Figure: Trajectories for 20 consumers (heterogeneous case)

Section 5

Conclusion

- 1 Introduction
- 2 Agents' problem
- 3 Principal's problem
- 4 Numerical results
- 5 Conclusion

Conclusion

Conclusion

- Characterization of mean-field equilibrium
- Closed-form formula of the optimal reward for homogeneous population
- Numerical computation of optimal reward for heterogeneous population
- Results on Energy Savings

References

Hansen, N. (2006). The CMA evolution strategy: A comparing review. In

Towards a new evolutionary computation (pp. 75–102). Springer Berlin Heidelberg.

Sannikov, Y. (2008). A continuous-time version of the principal-agent problem. Review of Economic Studies, 75(3), 957–984.

Capponi, A., Cvitanić, J., & Yolcu, T. (2012). Optimal contracting with effort and misvaluation. Mathematics and Financial Economics, 7(1), 93–128.

Adlakha, S., & Johari, R. (2013). Mean field equilibrium in dynamic games with strategic complementarities. Operations Research, 61(4), 971–989.

Fabisch, A. (2013). Cma-espp.

Chen, Y., Georgiou, T. T., & Pavon, M. (2015). On the relation between optimal transport and schrödinger bridges: A stochastic control viewpoint.

Journal of Optimization Theory and Applications, 169(2), 671–691.

Ngo, H.-L., & Taguchi, D. (2015). Strong rate of convergence for the euler-maruyama approximation of stochastic differential equations with irregular coefficients. Mathematics of Computation, 85(300), 1793–1819.

Bayraktar, E., & Zhang, Y. (2016). A rank-based mean field game in the strong formulation. Electronic Communications in Probability, 21, 1–12.

References

Bayraktar, E., Cvitanić, J., & Zhang, Y. (2019). Large tournament games. The Annals of Applied Probability, 29(6).

Elie, R., Mastrolia, T., & Possamaï, D. (2019). A tale of a principal and many, many agents. Mathematics of Operations Research, 44(2), 440–467.

Bayraktar, E., & Zhang, Y. (2021). Terminal ranking games.

Carmona, R., & Wang, P. (2021). Finite-state contract theory with a principal and a field of agents. Management Science, 67(8), 4725–4741.

Gobet, E., & Grangereau, M. (2021). Extended mckean-vlasov optimal stochastic control applied to smart grid management.

Shrivats, A., Firoozi, D., & Jaimungal, S. (2021). Principal agent mean field games in rec markets.