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4Roadmap

Bilevel optimization

Optimal control Principal-Agent

■ Chapter 4: Bilevel optimization
A retailer optimizes prices of existing offers by
taking into account the rational behavior of
customers (choice of the optimal tariff).

■ Chapter 5: Optimal control
A retailer finds an optimal policy to maximize a
gain on a period considering the dynamics of the
population (shift from one offer to another).

■ Chapter 6: Principal-Agent model
A retailer designs an optimal contract (function depending on the consumption level) to a
continuum of agents.
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5Stackelberg games1

Leader
Controller
Principal

max
x∈X ,y∗

F (x , y∗)

s.t. y∗ ∈ Ψ(x) = argmin
y∈Y, g(x ,y)≤0

f (x , y) . Follower
Environment

Agent

1H. von Stackelberg. “Theory of the Market Economy” (1952)
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5Stackelberg games1
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Bilevel optimization

Q. J., W. van Ackooij, C. Alasseur, and S. Gaubert. “Quadratic regularization of bilevel
pricing problems and application to electricity retail markets”. In: European Journal of
Operational Research (May 2023)

STUDY OF CUSTOMERS BEHAVIOR IN
BILEVEL PRICING PROBLEMS



7Actors involved in the market

Multi-Leader

Multi-Follower

Contract 1

. . .

Contract N1

−1

. . .

Regulated offersContract 1

. . .

Contract NL

. . .

Segment 1 Segment 2

. . .

Segment K−1 Segment K

⇝ Nash equilibrium at upper level1

1S. Leyffer and T. Munson. “Solving multi-leader–common-follower games”. In: Optimization Methods and Software 25.4
(2010), pp. 601–623



7Actors involved in the market

Single-Leader

Multi-Follower

Contract 1

. . .

Contract N−1

. . .

. . . . . .

Segment 1 Segment 2

. . .
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⇝ Nash equilibrium at upper level → static competition



7Actors involved in the market

Single-Leader

Multi-Follower

Contract 1

. . .

Contract N−1

Contract structure:
2 classical versions︷ ︸︸ ︷

Baseload Peak/Off-peak
Variable portion unique price peak price

D attributes(e/kWh) off-peak price
Fixed portion (e) power power



8(Envy-free) Product Pricing problem 1

Notation:

⋄ [K ] := {1 . . .K} customers segments,

⋄ [N] contracts (the N-th is the alternative),

Variables:

⋄ xn ∈ RD price vector for contract n,

⋄ µkn =

{
1 if segment k chooses n,
0 otherwise.

Data:

⋄ Ckn cost to supply k if he chooses n,

⋄ Rkn reservation price of k for contract n,

⋄ Ekn ∈ RD
+ fixed consumption of k.

Unitary profit and utility :

θkn(x) := ⟨Ekn, xn⟩D︸ ︷︷ ︸
electricity invoice

− Ckn︸︷︷︸
cost

, θkN = 0

Ukn(x) := Rkn︸︷︷︸
reservation price

− ⟨Ekn, xn⟩D︸ ︷︷ ︸
electricity invoice

, UkN = 0

Profit-maximization problem:

max
x∈X ,µ∗

J(x) :=
∑
k∈[K ]

ρk ⟨θk(x), µ∗
k ⟩N → leader pb

s. t. µ∗
k ∈ argmax

µ∈∆N

⟨Uk(x), µk⟩N → follower pb

1M. Labbé, P. Marcotte, and G. Savard. “A bilevel model of taxation and its application to optimal highway pricing”. In:
Management science 44 (1998), pp. 1608–1622



9Price complex and instability
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Figure: Follower response1, (K = 1, N = 3)
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Figure: Profit function, (K = 5, N = 2)

1E. Baldwin and P. Klemperer. “Understanding preferences:“demand types”, and the existence of equilibrium with
indivisibilities”. In: Econometrica 87.3 (2019), pp. 867–932
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10Mixed Multinomial Logit model (MMNL)


max

x∈X ,µ∗

∑
k∈[K ]

ρk ⟨θk(x), µ∗
k ⟩N

s. t. µ∗
k ∈ argmin

µ∈∆N


− ⟨Uk(x), µk⟩N
+

1
β
⟨log(µk), µk⟩N


⇝ µ∗

kn(x) = eβUkn(x)/
∑
l∈[N]

eβUkl (x)

⇒ µ∗
k ∈ Int∆N , no polyhedral complex
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Figure: Logit regularization1 (K = 5,N = 2)

1H. Li, S. Webster, N. Mason, and K. Kempf. “Product-Line Pricing Under Discrete Mixed Multinomial Logit Demand”. In:
Manufacturing and Service Operations Management 21 (2019), pp. 14–28
F. Gilbert, P. Marcotte, and G. Savard. “A Numerical Study of the Logit Network Pricing Problem”. In: Transportation Science 49
(Jan. 2015), p. 150105061815001



11Literature review

Customers’ response Resolution
[Gur+05] Deterministic Complexity results
[STM11] Deterministic MILP + heuristics
[Fer+16] Deterministic MILP + valid cuts

[Eyt18] Deterministic Tropical methods
[BK19] Deterministic Tropical methods

[STH07] Probabilistic MILP

[GMS15] Deterministic
MMNL Nonlinear optimization

[LH11] MNL Convex reformulation
[Li+19] MMNL Heuristics
[Hoh20] MMNL Nonlinear optimization

This work Quadratic MIQP + pivoting heuristics



12Our approach: Quadratic regularization (1)


max

x∈X ,µ∗

∑
k∈[K ]

ρk ⟨θk(x), µ∗
k ⟩N

s. t. µ∗
k ∈ argmin

µ∈∆N


− ⟨Uk(x), µk⟩N
+

1
β
⟨log(µk), µk⟩N


⇝ µ∗

kn(x) = eβUkn(x)/
∑
l∈[N]

eβUkl (x)

+ Probabilistic behavior (µ∗
k ∈ Int∆N)

+ Explicit lower response
- No combinatorial structure (non-convex NLP)


max
x∈X ,µ

∑
k∈[K ]

ρk ⟨θk(x), µ∗
k ⟩N

s. t. µ∗
k ∈ argmin

µ∈∆N


− ⟨Uk(x), µk⟩N
+

1
β
⟨µk − 1, µk⟩N



⇝ µ∗
k (x) = Proj∆N

(
β

2
(Uk(x))

)

+ Probabilistic behavior (µ∗
k ∈ ∆N)

+ Fast projection algorithms1

+ Combinatorial structure (polyhedral
complex)
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1L. Condat. “Fast Projection onto the Simplex and the l1 Ball”. In: Mathematical Programming, Series A 158.1 (July 2016),
pp. 575–585



13Our approach: Quadratic regularization (2)
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Figure: Follower response, (K = 1, N = 3)
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Figure: Profit function, (K = 5, N = 2)

Theorem:
The decision of the customers remains a polyhedral complex. Moreover, the profit is continuous and
concave on each cell of the polyhedral complex.



14Customers’ response as a polyhedral complex
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Figure: Polyhedral complex with K = 3 segments and N = 3 contracts
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� Envy-free PPP is
APX-Hard1

1V. Guruswami, J. D. Hartline, A. R. Karlin, D. Kempe, C. Kenyon, and F. McSherry. “On profit-maximizing envy-free
pricing.”. In: SODA. vol. 5. 2005, pp. 1164–1173



15Design of a pivoting heuristic – On an example

Figure: Example with K = 3 segments and N = 3 contracts



16QPCC reformulation

The follower problem is convex, and can be replaced by KKT conditions:

max
x∈X ,µ,η

∑
k∈[K ]

ρkηk + ρk ⟨Rk − Ck , µk⟩N − 2β−1ρk ∥µk∥2N

s. t.

0 ≤ µkn ⊥ 2β−1µkn − Ukn(x)− ηk ≥ 0, ∀k, n
0 ≤ µkN ⊥ 2β−1µk − ηk ≥ 0, ∀k
µk ∈ ∆N , ∀k

This leads to a convex Quadratic Program under Complementarity Constraints (QPCC)12

Replace the complementarity constraints by Big-M constraints
⇝ MIQP formulation (that can be directly solved by CPLEX for example).

1L. Bai, J. Mitchell, and J.-S. Pang. “On convex quadratic programs with linear complementarity constraints”. In:
Computational Optimization and Applications 54 (Apr. 2013)

2F. Jara-Moroni, J. Mitchell, J.-S. Pang, and A. Wächter. “An enhanced logical benders approach for linear programs with
complementarity constraints”. In: Journal of Global Optimization 77 (May 2020)



17Numerical Results

⋄ Up to 50 segments

⋄ Up to 10 contracts

Resolution with several methods

Det. MIQP
(CPLEX)

Black-box
(CMA-ES1)

NLP
(FilterMPEC2) Our approach

Time < 10s > 1h ∼ 230s ∼ 15s ∼ 100s
Variance - - up to 8% - < 1%
Optimum Gap : 1% Gap : 3% up to 1% of best up to 5% of best best known

1N. Hansen. “The CMA evolution strategy: a comparing review”. In: Towards a new evolutionary computation. Advances on
estimation of distribution algorithms. New York: Springer, 2006, pp. 75–102

2R. Fletcher and S. Leyffer. FilterMPEC. Available at https://neos-server.org/neos/solvers/cp:filterMPEC/AMPL.html

https://neos-server.org/neos/ solvers/cp:filterMPEC/AMPL.html


18Test case (1)

1 Base Standard Low cost offers (digital-only customer services)2 Peak/Off peak
3 Base Green Higher costs, but preferred by some segments
4 Peak/Off peak (higher reservation bill)

1 2 3 4 5 6 7 8 9 10
Segments

0

1

2

3

4

5

6

C
on

su
m

p
ti

on
(M

W
h

)

Peak Period

Off-Peak Period

(a) Nominal consumption of segments, over one year. For each segment, the
consumption is separated into the Peak period and the Off-peak period.
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(b) Weights of segments. For each segment, the
size of the section corresponds to the proportion
of users in this segment.



19Test case (2)

C++



19Test case (2)

Optimal prices
(Upper decision)

Contract 1 2 3 4
Peak (e/kWh) 0.1693 0.1863 0.1895

Off peak (e/kWh) 0.1834 0.1491 0.1626
Fixed portion (e) 133.7 129.29 122.95 128.19

Customers
distribution1

(Lower decision)

1 2 3 4 5 6 7 8 9 10
Segments

Contract 1

Contract 2

Contract 3

Contract 4

Competitors

1Optimal customers’ distribution with quadratic regularization of intensity β = 0.2. The size of the bar defines the probability
of choices, i.e., a bar taking a fourth of the rectangle height represents a choice probability of 25%.



Optimal control

Q. J., W. van Ackooij, C. Alasseur, and S. Gaubert. “Ergodic control of a heterogeneous
population and application to electricity pricing”. In: 2022 IEEE 61st Conference on
Decision and Control (CDC). 2022

IMPACT OF SWITCHING COSTS



21The consumer’ decision at time t

Figure: Example of price comparison engine (French electricity market)

Offers of my current
provider

Offers of other
providers



22Switching costs



23High-level description as lifted MDP2

µ(t) µ(t−1)
x (t) µ(t)

=

µ(t−1)P(x (t))

. . .

Inst. reward r(x (t), µ(t))

Bilevel pricing at time t

1. Distribution: µ
(t)
k ∈ ∆N the distribution of the population of cluster k over [N].

2. Instantaneous reward : r : (x (t), µ(t)) 7→∑
k∈[K ]ρk

〈
θk(x

(t)), µ
(t)
k

〉
N

3. (Linear) Transition: µ
(t)
k = µ

(t−1)
k Pk(x

(t))

4. Leader’s (global) objective (average long-term reward):

g∗(µ(0)) = sup
π∈Π

lim inf
T→∞

1
T

T∑
t=1

r(πt(µ
(t)), µ(t)) . (AvR)

← upper objective at time t

← lower decision at time t

2M. Motte and H. Pham. “Mean-field Markov decision processes with common noise and open-loop controls”. In: The Annals
of Applied Probability 32.2 (Apr. 2022)



24Specification to the Electricity Market context

Main example: The transition probability follows a logit response1:

[Pk(x)]n,m =
eβ[Ukm(x)+γkn 1m=n ]∑
l∈[N] e

β[Ukl (x)+γkn 1l=n ]
> 0 ,

■ γkn is the cost for segment k to switch from contract n to another one,

■ β is the intensity of the choice (it can represent a “rationality parameter”).

Link with static model : if a representative agent chooses the contract n at time t − 1, then

µ
(t)
k ∈ argmax

µ∈∆N

{〈
Uk(x

(t)) + γkn 1·=n, µ
(t)
k

〉
N
− 1

β
⟨log(µk), µk⟩N

}

1P. Pavlidis and P. B. Ellickson. “Implications of parent brand inertia for multiproduct pricing”. In: Quantitative Marketing and
Economics 15.4 (July 2017), pp. 369–407



25Ergodic control

µk1

µk2

µk3

Dk

Let Dk := vex ({µkPk(x) | x ∈ X , µk ∈ ∆N}),
and D =×k∈[K ]

Dk .

Lemma
Dk ⊆ relint ∆K

N .
Moreover, for t ≥ 1, µ(t) ∈ D for any policy π ∈ Π.

For v : ∆K
N → R, the Bellman operator B is

B v (µ) = max
x∈X
{r(x , µ) + v(µP(x))} .

Theorem
The ergodic eigenproblem

g 1D +h = B h
admits a solution g∗ ∈ R and h∗ Lipschitz and convex on D.
Moreover, g∗ satisfies (AvR), and x∗(·) ∈ argmaxB h∗ defines an optimal policy .



26Deterministic MDP without controllability – the
most degenerate case

Time Transitions Assumption

[Sch85] discrete stochastic unichain3

[Bis15] discrete stochastic Doeblin / minorization4

[MN02] discrete deterministic quasi-compactness
[Fat08] continuous deterministic controlability5

[Zav12] discrete deterministic controlability
[CGG14] continuous deterministic contraction of the dynamics (A2)
This work discrete deterministic contraction of the dynamics (A2)

Standard unichain/Doeblin type conditions entail that the eigenvector is unique, up to an additive
constant, this is no longer true in our case.

weak-KAM

3the Markov Chain induced by any deterministic stationary policy consists of a single recurrent class plus a –possibly empty–
set of transient states (i.e., there exists a subset of states that are visited infinitely often with probability 1 independently of the
starting state)

4for all state s, action a and measurable subset B of the state space, P(B|x, a) ≥ ϵµ(B)
5for every pair of states (s, s′), there exists an action a making s′ accessible from s



27Ergodic control – Sketch of the proof (existence)

We use a contraction argument directly on the dynamics (not on the Bellman Operator):
Let dH be the Hilbert’s projective metric defined as

dH(u, v) = max
1≤i,j≤n

log

(
ui
vi

vj
uj

)
.

(D, dH) is a complete metric space.

Birkhoff theorem
Every matrix Q ≫ 0 is a contraction in Hilbert’s projective metric, i.e.,

∀µ, ν ∈ (RN
>0), dH(µQ, νQ) ≤ κQdH(µ, ν) ,

where κQ := tanh (DiamH(Q) / 4) < 1.

We then use the method of vanishing discount approach1:

→ the family of α-discounted objective function (Vα(·))α is equi-Lipschitz , which entails the
existence of the eigenvector by a compactness argument.

1P.-L. Lions, G. Papanicolaou, and S. Varadhan. “Homogenization of Hamilton-Jacobi equation”. Jan. 1987



28Policy Iteration

⋄ Regular grid Σ = (µ̂i⃗ )⃗i∈[M]K of the simplex ∆K
N ,

⋄ Bellman Operator BΣ using semi-lagrangian discretization (closest neighbor).

⋄ On-the-fly generation of transitions, refining the combinatorial version of Howard’s scheme1.

Algorithm Policy Iteration with on-the-fly transition generation

Require: Local grid Λ, local transitions (TΛ,k )k∈[K ], initial decision vector d̂ ′

1: do
2: d̂ ← d̂ ′

3: ĝ , ĥ solution of

ĝ + ĥ⃗
i
= r(d̂⃗

i
, µ̂

i⃗
) + ĥ

j⃗
, i⃗ ∈ Σ

j⃗ = TΣ (⃗i , d̂⃗
i
)

▷ Policy Evaluation

4: for i⃗ ∈ Σ do
5: d̂ ′

i⃗
← argminx∈X

{
r(x , µ̂

i⃗
) + ĥ

j⃗
s.t. j⃗ = TΣ (⃗i , x)

}
▷ Policy Improvement

6: end for
7: while d̂ ′ ̸= d̂
8: return ĝ , d̂

1J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. McGettrick, and J.-P. Quadrat. “Numerical Computation of Spectral
Elements in Max-Plus Algebra”. In: IFAC Proceedings Volumes 31.18 (July 1998), pp. 667–674
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⋄ Regular grid Σ = (µ̂i⃗ )⃗i∈[M]K of the simplex ∆K
N ,

⋄ Bellman Operator BΣ using semi-lagrangian discretization (closest neighbor).
⋄ On-the-fly generation of transitions, refining the combinatorial version of Howard’s scheme1.

j⃗1 = TΛ,1 (⃗i1, x)

µ1,1
µ1,2

µ1,3

j⃗2 = TΛ,2 (⃗i2, x)

µ2,1
µ2,2

µ2,3

j⃗K = TΛ,K (⃗iK , x)

µK ,1
µK ,2

µK ,3

. . .

Decomposition (ind. populations)

j⃗ = TΣ(⃗i , x)

1J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. McGettrick, and J.-P. Quadrat. “Numerical Computation of Spectral
Elements in Max-Plus Algebra”. In: IFAC Proceedings Volumes 31.18 (July 1998), pp. 667–674



29Numerical results

Instance (node, arcs)
RVI

(with K.-M. damping)
PI

(combinatorial) This work

K = 1,N = 1 (2e3, 2.5e6) 70s 1s 0.2s
δµ = 1/2000 0.8Mo 30Mo 9Mo
K = 2,N = 2 (7.4e5, 6.9e8) 7h 390s 70s
δµ = 1/50 15Mo 13Go 103Mo

Table: Comparison with combitorial Howard algorithm1 and RVI with Krasnoselskii-Mann damping2,3.

1J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. McGettrick, and J.-P. Quadrat. “Numerical Computation of Spectral
Elements in Max-Plus Algebra”. In: IFAC Proceedings Volumes 31.18 (July 1998), pp. 667–674

2A. Federgruen, P. Schweitzer, and H. Tijms. “Contraction mappings underlying undiscounted Markov decision problems”. In:
Journal of Mathematical Analysis and Applications 65.3 (Oct. 1978), pp. 711–730

3M. Akian, S. Gaubert, U. Naepels, and B. Terver. Solving irreducible stochastic mean-payoff games and entropy games by
relative Krasnoselskii-Mann iteration. 2023
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(a) Optimal finite horizon trajectory (provider action and
customer distribution) for low switching cost.
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(b) Optimal finite horizon trajectory (provider action and
customer distribution) for high switching cost.

↪→ Confirms optimality of periodic promotions, already observed in Economics



Principal-Agent

Q. J., W. van Ackooij, C. Alasseur, and S. Gaubert. “A Quantization Procedure for
Nonlinear Pricing with an Application to Electricity Markets”. To appear in: 2023 IEEE
62nd Conference on Decision and Control (CDC)

IMPACT OF THE SIZE OF THE MENU



32Evolutions in the model

Single-Leader
Contract 1

. . .

Contract N − 1

Multi-Follower Segment 1 Segment 2

. . .

Segment K − 1 Segment K

Inmpact of the size of the menu (N) ?

Contract structure:

x = (

Fixed portion (e)︷︸︸︷
p , q1, q2, . . . , qD︸ ︷︷ ︸

Variable portions (e/kWh)

)
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Single-Leader
Contract 1

. . .

Contract N − 1

Multi-Follower Segment 1 Segment 2

. . .

Segment K − 1 Segment K

Inmpact of the size of the menu (N) ?

Contract structure:

x = (

Fixed portion (e)︷︸︸︷
p , q1, q2, . . . , qD︸ ︷︷ ︸

Variable portions (e/kWh)

)

Peak (MWh)

Off-peak (MWh)

Continuum of
Followers

∑
k∈[K ]

ρk = 1

∫
E
ρ(e)de = 1

Each agent is defined by a vector
of characteristics e ∈ E ⊆ RD

≥0.



33The Monopolist problem1

Assumption: (Continuum of offers).
The leader constructs a continuum of offers, where each offer is especially designed for a type e ∈ E :

(pi , qi )1≤i<N ⇝ (p(e), q(e))e∈E .

Optimality at the lower level:
The leader ensures that (p(e), q(e)) is selected by e by an Incentive-compatibility condition :

u(e2)− u(e1) ≥ ⟨e1 − e2, q(e1)⟩ , ∀e1, e2 ∈ E , (IC)

with u(e) = −p − ⟨q(e), e⟩.

Exemple with “Tarif Bleu" (D = 2)

(IC) condition ⇐⇒ for a consumption e2, p(e2) + ⟨e2, q(e2)⟩︸ ︷︷ ︸
Invoice with contract e2

≤ p(e1) + ⟨e2, q(e1)⟩︸ ︷︷ ︸
Invoice with contract e1

(contract e2 really preferred by agent e2 compared to any other contract e1).

1J.-C. Rochet and P. Choné. “Ironing, sweeping, and multidimensional screening”. In: Econometrica (1998), pp. 783–826



34A Convex Pricing Problem

The aim of the monopolist is then to maximize a revenue function, defined as

J(u, q) :=

∫
E
L(e, u(e), q(e))de − C

(∫
E
M(e, q(e))de

)
, (1)

In addition to (IC), u(e) must be greater than a reservation utility:

u(e) ≥ R(e) . (IR)

The problem solved by the monopolist is then

max
u,q

{
J(u, q)

∣∣∣∣∣u, q satisfy (IC), (IR)

(u(e), q(e)) ∈ Ue × Q for e ∈ E

}
(R.−C .)

Theorem
If L is linear , M is strictly convex in q, and C is increasing and strictly convex , then
Problem (R.−C .) has a unique optimal solution.



35Objective: Quantization of the menu of contracts

Nb of contracts

Nb of customers

Multi-attribute
PPP

Variational
Problem (R.-C.)

→

via Quantization
procedures

Difficulty :
The multi-attribute PPP problem with elasticity (big-M formulation) is already challenging for more
than 10 customers.
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35Objective: Quantization of the menu of contracts

Nb of contracts

Nb of customers

Multi-attribute
PPP

Variational
Problem (R.-C.)→

via Quantization
procedures

Difficulty :
The multi-attribute PPP problem with elasticity (big-M formulation) is already challenging for more
than 10 customers.

Alternative approach1:
Find the “best" approximation of the infinite-size menu of offers by a (small) prescribed number of
contracts, i.e.,

Approximate (p(e), q(e))e∈E by N contracts (p̂i , q̂i )1≤i≤N .

aD. Bergemann, E. Yeh, and J. Zhang. “Nonlinear pricing with finite information”. In: Games and Economic Behavior 130
(Nov. 2021), pp. 62–84



36“Quantization" of the utility function

Step 1: Solve Problem (R.−C .)

⋄ Solve the problem on a discretization grid Σ of E1.

⋄ We obtain a discretized infinite-size menu (p̂i , q̂i )i∈Σ.

The utility ûΣ is then defined as

ûS(e) =
∨
i∈S

ûi (e) , S ⊆ Σ ,

where ûi : e ∈ E 7→ − ⟨q̂i , e⟩D − p̂i (“basis function") 2.5 5.0 7.5 10.0
Off-Peak consumption (MWh)

4

6
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10

12

14
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ea
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n
su

m
p

ti
on

(M
W

h
)

Step 2: Select from the |Σ| contracts the N “best" contracts

min
S⊆Σ
{“Distance”(ûS , ûΣ) s. t. |S | ≤ N} . (2)

1e.g., G. Carlier and X. Dupuis. “An iterated projection approach to variational problems under generalized convexity
constraints”. In: Applied Mathematics and Optimization 76.3 (2017), pp. 565–592
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37Importance metric

min
S⊆Σ

{d(ûS , ûΣ) s.t. |S | ≤ N} , (3)

1. L∞ (resp. L1) norm: d∞(u, v) = ∥u − v∥L∞(X ) (resp. d1(u, v) = ∥u − v∥L1(X )),

2. J-based criterion: dJ(u, v) = J(v , qv )− J(u, qu) . (↔ maximization of revenue)6.

Definition (Importance metric)7

ν(S , i) = d(ûS\{i}, ûS) . (4)

This corresponds to an incremental version of the criteria (3).

→ (L∞/L1): it expresses the difference between the “shape" of ûS with and without ûi

→ (J-based): it expresses the loss of revenue when contract i is removed.

6
qu := −∇u, see J.-C. Rochet and P. Choné. “Ironing, sweeping, and multidimensional screening”. In: Econometrica (1998),

pp. 783–826
7W. M. McEneaney, A. Deshpande, and S. Gaubert. “Curse-of-complexity attenuation in the curse-of-dimensionality-free

method for HJB PDEs”. In: 2008 American Control Conference. IEEE, June 2008



38Greedy descent approach

“One-shot procedure" [MDG08] Sort the importance metric and keep the n “most important"
basis functions.

“Greedy ascent approach" [GMQ11] Iteratively add the “most important" basis function to S.
“Bundle-based pruning" [GQS14] Introduction of bundle methods for time reduction.

Here, Greedy descent approach:

(i) S ← Σ

(ii) While |S | > n,

1. For each i ∈ S , compute ν(S , i).
2. Sort the importance metric and remove the

“least important" basis function.

� This pruning problem is a
continuous version of the facility
location problem1 (NP-Hard).

Pros: More accurate pruning (reduction of the approximation error)
Cons: More time consuming (recomputation of the importance metric at each step)

1S. Gaubert, W. McEneaney, and Z. Qu. “Curse of dimensionality reduction in max-plus based approximation methods:
Theoretical estimates and improved pruning algorithms”. In: IEEE Conference on Decision and Control and European Control
Conference. IEEE, Dec. 2011



391D Example

e ∈ E

ûS(e) =
∨

i∈S ûi (e)

S = { 1 2 3 4 5 6 }

1 2 3 4 5 6

Maximization diagram :
Subdivision of E in cells

Vi = {e ∈ E | ûi (e) ≥ ûj(e), ∀j ∈ S}

L1 importance metric :

ν(S , 3) = A
( )

ν(S , 5) = A




L∞ importance metric :

ν(S , 3) =

ν(S , 5) =

L1 importance metric :

ν(S , 3) = A
( )

ν(S , 5) = A




L∞ importance metric :

ν(S , 3) =

ν(S , 5) =

Key point : When û4 is removed, only ν(S , 3) and ν(S , 5) change (neighboring cells).



391D Example

e ∈ E
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L1 importance metric :

ν(S , 3) = A
( )

ν(S , 5) = A




L∞ importance metric :

ν(S , 3) =

ν(S , 5) =

L1 importance metric :

ν(S , 3) = A
( )

ν(S , 5) = A




L∞ importance metric :

ν(S , 3) =

ν(S , 5) =
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40L1 and J-based case
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Menu of 10 contracts

The blue polyhedron corresponds to F1,−10 ∩ V10

Customers decision as a Maximization diagram
(polyhedral complex):

For a set S of contracts,
⋄ Vi = {e ∈ E | ûi (e) ≥ ûj(e), ∀j ∈ S}

(= customers who choose contract i ),
⋄ Fj,−i is the future cell of j if i is removed, i.e., Fj,−i = {e ∈ E | ûj(e) ≥ ûk(e), ∀k ̸= i ∈ S}

Three routines are used:
⋄ Vrep(S , i) returns the representation by vertices of Vi (reverse search algorithm lrs),
⋄ updateNeighbors updates the neighbors of each cell knowing the vertex representation,
⋄ updateImpMetric updates ν(S , i) for all i ∈ I .

Algorithm 2: Pruning with local update

Require: N
1: for i ∈ Σ do
2: Vi ← Vrep(Σ, i) ▷ Initial Vertex representation
3: end for
4: S ← Σ
5: I ← Σ ▷ Index of problems to recompute
6: for t = 1 : |Σ| − N do
7: (Ji )i∈I ← updateNeighbors((Vi )i∈I )
8: for i ∈ I , j ∈ Ji do
9: Fj,−i ← Vrep(S\{i}, j) ▷ Future cells
10: end for
11: ν ← updateImpMetric(I , (Vi )i∈S , (Fj,−i )j∈Ji ,i∈S )
12: r ← argmini∈S νi ▷ Contract to remove (“least important" one)
13: S ← S\{r}
14: for j ∈ Jr do
15: Vj ← Fj,−r ▷ Update Vertex representation
16: end for
17: I ← Jr
18: end for
19: return S
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41Algorithm example



42Complexity results

Proposition

The importance metric of a contract i ∈ S stays unchanged when we remove a contract j which is
not in the neighborhood of i , i.e., ν(S\{j}, i) = ν(S , i) for j ∈ S\Ji .

Proposition (Critical steps)

Suppose that |Ji | ≤ m (maximum number of neighbors of a cell during the execution).

# calls to Vrep(S , i)

O(m|Σ|2) ⇝ O(m2|Σ|)

Remark: reverse search has an incremental running time of O(|Σ|d) per vertex if the input is
nondegenerate1.

1D. Avis. “A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm”. In: Polytopes — Combinatorics
and Computation. Ed. by G. Kalai and G. M. Ziegler. Basel: Birkhäuser Basel, 2000, pp. 177–198
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Figure: Comparison of error bounds.
(g) stands for global update while (l) stands for local update.

Loss of revenue

Size of menu
(decreasing order)

Objective of the retailer :

Finding the minimum number of contracts needed to obtain a loss of revenue lower than a target.

target

Minimum nb of
contracts
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44Other contributions

⋄ Chapter 7: Principal-Multi-Agent model1

Design of a rank-based reward for energy savings purposes.

⋄ Chapter 8: Chance-Constrained Programming2

Study of distributionally robust models using Bennett-type concentration inequalities.

⋄ Chapter 9: Sparse optimization3

Study of entropic lower bounds for sparse optimization using Schur convexity.

1C. Alasseur, E. Bayraktar, R. Dumitrescu, and Q. J. A Rank-Based Reward between a Principal and a Field of Agents:
Application to Energy Savings. preprint. 2022

2Q. J. and R. Zorgati. Tight Bound for Sum of Heterogeneous Random Variables: Application to Chance Constrained
Programming. 2022

2Q. J., A. Bialecki, L. E. Ghaoui, S. Gaubert, and R. Zorgati. “Entropic Lower Bound of Cardinality for Sparse Optimization”.
Nov. 2022



45Perspectives

⋄ Elasticity of the demand:
→ Extend to more general cases than iso-elasticity.

⋄ Link between turnpike properties and weak-KAM theory:
→ Extend the results of convergence to Aubry set (using strict-dissipativity) to
non-controllable cases.

⋄ Partial participation:
→ Extend the quantization methods to partial participation of the consumers.

⋄ Bounds for the approximation error made with the quantization approach:
→ Classical approximation results do not apply in our context.
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53References VIII

[BK19] E. Baldwin and P. Klemperer. “Understanding preferences:“demand types”, and
the existence of equilibrium with indivisibilities”. In: Econometrica 87.3 (2019),
pp. 867–932.

[EMP19] R. Elie, T. Mastrolia, and D. Possamäı. “A Tale of a Principal and Many, Many
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Adverse Selection Approach to Power Pricing”. In: SIAM Journal on Control
and Optimization 58.2 (Jan. 2020), pp. 686–713.

[GS20] S. Gaubert and N. Stott. “A convergent hierarchy of non-linear eigenproblems
to compute the joint spectral radius of nonnegative matrices”. In: Mathematical
Control & Related Fields 10.3 (2020), pp. 573–590.



54References IX

[Hoh20] S. Hohberger. “Dynamic pricing under customer choice behavior for revenue
management in passenger railway networks”. PhD thesis. Universität
Mannheim, 2020.

[Jar+20] F. Jara-Moroni, J. Mitchell, J.-S. Pang, and A. Wächter. “An enhanced logical
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58KKT transformation

The follower problem is linear, and can be replaced by KKT conditions:

max
x∈X ,µ,η

∑
k∈[K ]

ρkηk + ρk ⟨Rk − Ck , µk⟩N

s. t.

0 ≤ µkn ⊥ Ukn(x) + ηk ≤ 0, ∀k, n
0 ≤ µkN ⊥ ηk ≤ 0, ∀k
µk ∈ ∆N , ∀k

This leads to a Linear Program under Complementarity Constraints (LPCC).

Usually, compl. constraints replaced by Big-M constraints ⇝ MILP formulations12

1R. Shioda, L. Tunçel, and T. Myklebust. “Maximum utility product pricing models and algorithms based on reservation price”.
In: Computational Optimization and Applications 48 (Mar. 2011), pp. 157–198

2C. G. Fernandes, C. E. Ferreira, A. J. Franco, and R. C. Schouery. “The envy-free pricing problem, unit-demand markets and
connections with the network pricing problem”. In: Discrete Optimization 22 (2016), pp. 141–161



59Impact of the regularization intensity
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’Logit’: model under logit response, ’Quad.’: model under quadratic response
’Det’: objective value obtained with the optimal deterministic prices but under quadratic response.
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vβ

β

v∞

v∞ = maxn(Rn − Cn)

#v∞ = | argmaxn(Rn − Cn)|

Theorem:
For the standard MNL model (K = 1),

1. limβ→0(βvβ) =W0 ((N−1)/e); where W0 denotes the Lambert function.

2. if v∞ > 0 then vβ =
β→+∞

v∞ − ln(βv∞)
β

+ ln(#v∞)−1
β

+ o
(

1
β

)
.



60Bilevel optimization with uncertainty1

Here-and-now
leader

x
↷

Gumbell
uncertainty

Ũkn(x , ε) = Ukn(x) + εkn
↷

Wait-and-see
follower

ykn(x , ε) = 1
(Ũkn(x,ε)>Ũkm(x,ε),m ̸=n)

Risk-neutral leader:

max
x∈X

Eε

∑
k∈[K ]

ρk ⟨θk(x), y∗
k ⟩N

 = max
x∈X

∑
k∈[K ]

ρk ⟨θk(x), µ∗
k ⟩N

where µ∗
kn = P

[
Ũkn(x , ε) > Ũkm(x , ε),m ̸= n

]
.

1Y. Beck, I. Ljubić, and M. Schmidt. “A survey on bilevel optimization under uncertainty”. In: European Journal of
Operational Research (Feb. 2023)



61Relative Value Iteration with Krasnoselskii-Mann damping

⋄ Regular grid Σ of the simplex ∆K
N ,

⋄ Bellman Operator BΣ using Freudenthal triangulation1.

Algorithm RVI with Mann-type iterates

Require: Σ, BΣ, ĥ0
1: Initialize ĥ = ĥ0, ĥ′(µ) = BΣ ĥ

2: while Span(ĥ′ − ĥ) > ϵ do
3: ĥ← ( ĥ′ −max{ĥ′}e + ĥ )/2
4: ĥ′(µ̂)← (BΣ ĥ)(µ̂) for all µ̂ ∈ Σ ▷ Update of bias
5: end while
6: ĝ ← max(ĥ′ − ĥ)

7: return ĝ , ĥ

µ1
µ2

µ3

Proposition2

Convergence time of RVI
= O(ϵ−2)

1W. S. Lovejoy. “Computationally Feasible Bounds for Partially Observed Markov Decision Processes”. In: Operations
Research 39.1 (Feb. 1991), pp. 162–175

2S. Gaubert and N. Stott. “A convergent hierarchy of non-linear eigenproblems to compute the joint spectral radius of
nonnegative matrices”. In: Mathematical Control & Related Fields 10.3 (2020), pp. 573–590



62Weak-KAM solution

Let T+
c be the positive Lax-Oleinick semi-group, defined as

T+
c h(x) := sup

y∈X
{h(y)− c(x , y)} . (5)

Existence of positive weak KAM solution, case of controllable system1

Assume that c(·, ·) is uniformly bounded and jointly continuous. Then, the problem

T+
c h = h + g (6)

admits a solution h∗ ∈ Vex(X ) and g∗ ∈ R. Moreover, any sequence (xn)n∈N satisfying
xn+1 ∈ argmaxT+

c h∗(xn) for n ∈ N minimizes the average stage cost:

λ∗ = inf
(xn)n∈N

lim sup
N→∞

1
N

N∑
n=1

c(xn, xn+1) . (7)

1M. Zavidovique. “Strict sub-solutions and Mañé potential in discrete weak KAM theory”. In: Commentarii Mathematici
Helvetici (2012), pp. 1–39



63Aubry set

Aubry set

Let h ∈ S be a critical subsolution. The Aubry set of h, Ãh ∈ X N, is defined as

Ãh =

{
(xn)n∈N | ∀n < p, h(xp)− h(xn) =

p−1∑
k=n

c(xk , xk+1) + (p − n)g∗

}
.

The Aubry set Ã is then the intersection over all the critical subsolutions, i.e., Ã = ∩h∈S Ãh. Finally,
the projected Aubry set A refers to the projection of the Aubry set on the first component, and is
given by

A =
{
x0 | (xn)n∈Z ∈ Ã

}
⊆ (X 2)N .

Projected Aubry set ↔ states where an optimal strategy can go through infinitely-many times.

→ In particular, a τ -cycle (xn)n∈N, where xi+τ = xi for all i ∈ N, belongs to the Aubry set if∑τ
i=1 c(xk , xk+1) = −τg∗, i.e., it produces an optimal average long-term reward.

Therefore, Aubry sets are able to capture the “optimal support” of the dynamics.



64Turnpike properties

Strict-dissipativity condition:

h(y)− h(x) + α(∥x − xe∥) ≤ c(x , y) + g∗, x , y ∈ X (8)

Convergence to a steady-state

If (8) holds, then Ã = {(xn)n∈N} where xn = xe for all n ∈ N.

Convergence to the Aubry set

Let h∗ be a positive weak KAM solution, and x0 ∈ X . We denote by π∗(·) ∈ argmaxT+
c h∗ an

optimal stationary policy and {x∗
i } the sequence of states generated by the policy π∗. Then, all the

accumulation points of the sequence {xi} belong to the projected Aubry set A.

Sketch of proof : exploiting the existence of a strict subsolution h0 such that:

h0(y)− h0(x) < c(x , y) + g∗ for all (x , y) /∈ Â . (9)



65L∞ case

ν(S , i) = max
e∈E

{
max
j∈S

ûj(e)− max
j∈S\{i}

ûj(e)

}
= max

e∈E
min

j∈S\{i}
{ûi (e)− ûj(e)} . (10)

Then, the importance metric can be computed by solving a linear program :

max
e∈E, ν

{ν s.t ∀j ∈ S\{i}, ûi (e)− ûj(e) ≥ ν} (PS
i )

Algorithm 1: Pruning with local update

Require: n
1: S ← Σ
2: I ← Σ ▷ Problems to recompute
3: for t = 1 : |Σ| − n do
4: for i ∈ I do
5: νi , λi ← solution of (PS

i )
6: Ji ← {j ∈ S\{i} | λij > 0}
7: end for
8: r ← argmini∈S νi
9: S ← S\{r}
10: I ← {i ∈ S | r ∈ Ji} ▷ Neighbors
11: end for
12: return S

Proposition

Let {λij} be the optimal dual variables in (PS
i ).

Then, the importance metric of i stays
unchanged when we remove a contract j s.t.
λij = 0, or equivalently

{i | ν(S\{j}, i) ̸= ν(S , i)} ⊆ I := {i | λij > 0} .



66Resolution of the discretized R.-C. problem

max
(ui ,qi )i∈Σ

JΣ(u, q)

s. t. ui ≥ Ri , ∀i
ui ∈ [u−, u+], qi ∈ [q−, q+], ∀i
ui − uj ≥ ⟨ei − ej , qi ⟩2 , ∀i , j

→ We look at a special case of b-convexity constraint1.

→ The number of convexity constraint (O(|Σ|2)) can be reduced2 to O(|Σ| ln2 |Σ|) in R2.

→ Here, we use an iterative procedure:

1. Start with ui − uj ≥ ⟨ei − ej , qi ⟩2 , ∀i , j such that j ∈ N (i).
2. Solve the discretized version with the partial set of convexity constraints.
3. If remaining convexity constraints are violated, add them to the model and return to ’2.’

Otherwise, return the solution.
1G. Carlier and X. Dupuis. “An iterated projection approach to variational problems under generalized convexity constraints”.

In: Applied Mathematics and Optimization 76.3 (2017), pp. 565–592
2J.-M. Mirebeau. “Adaptive, anisotropic and hierarchical cones of discrete convex functions”. In: Numerische Mathematik

132.4 (2016), pp. 807–853



67Computation of the importance metric

Exact computation of ν(S , i) in the 2D-case :

updateImpMetric (L1 error)

Require: I , (Vi )i∈S , (Fj,−i )i∈I ,j∈Ji
1: for i ∈ I do
2: νi ←

∑
j∈Ji

∫∫
Fj,−i∩Vi

(ûi (e)− ûj (e))de
3: end for
4: return ν

updateImpMetric (J-based error)

Require: I , (Vi )i∈S , (Fj,−i )i∈I ,j∈Ji
1: M0 ←

∑
i∈S

∫∫
Vi

M(e, q̂i )dx
2: for i ∈ S do
3: δL ←

∑
j∈Ji

∫∫
Fj,−i∩Vi

L(e, ûi (e), q̂i )− L(e, ûj (e), q̂j )dx

4: δM ←
∑

j∈Ji

∫∫
Fj,−i∩Vi

M(e, q̂j )−M(e, q̂i )dx
5: νi ← δL − C(M0) + C(M0 + δM)
6: end for

Green’s formula
Let P a 2D-polytope describes by its vertices (xi , yi ) ∈ R2 (counter-clockwise). Then ∀a, b, c ∈ R,∫∫

P

(ax + by + c)dxdy =
N∑
i=1

[∮ yi+1

yi

b(qi +
1
τi
y)ydy −

∮ xi+1

xi

(ax + c)(pi + τix)dx

]
,

with τi =
yi+1−yi
xi+1−xi

, pi := yi − τixi and qi := xi − 1
τ
yi .



68Link with Bregman Voronöı diagrams

We define the Bregman divergence Du : E ×E → R+ with respect to a convex differentiable function u as

Du(e1, e2) = u(e1)− u(e2)− ⟨e1 − e2,∇u(e2)⟩ (11)

Definition (Bregman Voronöı diagram1)

Let S = {e1, . . . , en} be a set of n points of E. We call Bregman Voronöı diagram of S :

voru(ei ) := {e ∈ E | Du(e, ei ) ≤ Du(e, ej ), ∀j ∈ [n]} . (12)

The point ei , associated with the Voronöı cell Ci = voru(ei ), is called a site.

Proposition (Interpretation as Voronöı diagram)

Let S = {e1, . . . , en} be a set of n points of E. We define the family of function ûi as the supporting
hyperplanes of u at ei , i.e.,

ûi (e) = u(ei ) + ⟨e − ei ,∇u(ei )⟩ .

Then, the maximization diagram of {ûi}1≤i≤n and the Bregman Voronöı diagram of S coincides.
1J.-D. Boissonnat, F. Nielsen, and R. Nock. “Bregman Voronoi Diagrams”. In: Discrete and Computational Geometry 44.2

(Apr. 2010), pp. 281–307



69Clustering with Bregman distance

We associate to E the p.d.f. ρ satisfying
∫
E ρ(e)de.

We denote by Lu(S) the loss of optimality induced by a set of representatives S = {e1, . . . , en}:

Lu(S) =
n∑

i=1

∫
voru(ei )

Du(e, ei )ρ(e)de =

∫
E
(u(e)− max

1≤i≤n
ûi (e))ρ(e)de (13)

If ρ is the uniform distrib., Lu(S) is the L1-error between u(·) and the upper envelope of {ûi}1≤i≤n.

Algorithm 3 : Bregman Hard Clustering – Lloyd procedure ([Ban+05])

Require: number of cluster n, initial centroids {e(0)i }1≤i≤n

1: t ← 0
2: do
3: C(t)i ← {e ∈ E | Du(e, e

(t)
i ) ≤ Du(e, e

(t)
j ), ∀j ∈ [n]} for all i ∈ [n] ▷ Assignment step

4: e
(t+1)
i =

∫
C(t)
i

eρ
| C(t)

i

(e)de ▷ Centroid estimation step

5: t ← t + 1
6: while there exist i ∈ [n] such that e

(t)
i ̸= e

(t−1)
i

7: return {e(t)i }1≤i≤n



70Isoelasticity (1)

Details on the model :
⋄ Each contract is defined by a fixed price component p ∈ R (in €), and d variable price components

z ∈ Rd (in €/kWh) (typically d = 2 in France).

⋄ The price coefficients (p, z) belong to a non-empty polytope P × Z ⊂ Rd+1:

P = [p−, p+], Z :=
{
z− ≤ z ≤ z+ | zi1 ≤ κi1,i2zi2 for i1 ≤P i2

}
,

where P is a partially ordered set (poset) of {1, . . . , d}, and ≤P the ordering relation.

→ Classically in electricity pricing : inequalities between peak and off-peak prices.

⋄ Each individual in the population is characterized by a reference consumption vector e ∈ Rd
>0, and can

deviate from it (elasticity).
Here, we use Constant Relative Risk Aversion (CRRA,[Pin12; Ala+20]) :

Ue : x ∈ Rd
≥0 7→

1
η

d∑
i=1

βei (xi )
η , η ∈ (−∞, 0) ∪ (0, 1] , (14)

where βe ∈ Rd
≥0 is the intensity of energy needs. The coefficient η is the risk aversion coefficient.



71Isoelasticity (2)

Details on the model :
⋄ For price coefficients (p, z) ∈ R×Rd , a consumer e will optimize his consumption in order to

maximize the welfare function :

U∗
e : (p, z) ∈ R×Rd 7→ max

x∈R≥0d
{Ue(x)− ⟨x , z⟩} − p . (15)

⋄ If e ∈ Rd is obtained for reference prices p̌ ∈ R and ž ∈ Rd , the optimal consumption of customer Eei
on period i ∈ [d ] is:

Eei (z) = ei (zi/ži )
−1
1−η ≥ 0 , (16)

and the welfare function is given by

U∗
e (p, z) =

(
1
η
− 1
) d∑

i=1

ei ži (zi/ži )
−η
1−η − p . (17)

Assumption : the provider is able to define as many offers as consumers

(infinite-size) menu : e 7→ (p(e), q(e)) ∈ P × Q



72Model
Let us define the (weighted) invoice of a consumer as

Le : (p, z) ∈ R×Rd 7→ (p + ⟨Ee(z), z⟩)ρ(e) , (18)

where
∫
ρ(e)de = 1. The revenue maximization problem is then

max
p,z
J 1(p, z)− J 2(z) (19a)

s.t. U∗
e (p(e), z(e)) ≥ U∗

e (p(e
′), z(e′)), ∀e, e′ (19b)

U∗
e (p(e), z(e)) ≥ R(e), ∀e (19c)

p(e) ∈ P, z(e) ∈ Z (19d)

where J 1(p, z) =
∫
Le(p(e), z(e))de and J 2(z) = C

(∫ ∑d
i=1 Eei (z(e))ρ(e)de

)
.

Recovering linear utilities : let us consider qi := (zi/ži )
−η
1−η .Then,

■ the consumption is convex , expressed as Eei (qi ) = ei [qi ]
1
η ,

■ both the utility and the weighted invoice are linear: defining α = (η−1 − 1)ž,

u(e) := ⟨e, α⊙ q(e)⟩ − p(e) ,

L(e, u(e), q(e)) :=
(

1
η
⟨e, ž ⊙ q(e)⟩ − u(e)

)
ρ(e) ,

(20)



73Ranking game (1)

Recall

Subpopulation 1

. . .

Subpopulation k

. . .

Subpopulation K

Provider

Reward = f (rank)

Next step

Competition (Nash) Competition (Nash) Competition (Nash)

Lower level (agents)

Upper level (principal)

Ranking games : Application to Energy Savings C. Alasseur, E. Bayraktar, R. Dumitrescu, Q. Jacquet 11 / 25

1R. Carmona and P. Wang. “Finite-State Contract Theory with a Principal and a Field of Agents”. In: Management Science
67.8 (Aug. 2021), pp. 4725–4741

2R. Elie, T. Mastrolia, and D. Possamäı. “A Tale of a Principal and Many, Many Agents”. In: Mathematics of Operations
Research 44.2 (May 2019), pp. 440–467

3A. Shrivats, D. Firoozi, and S. Jaimungal. Principal agent mean field games in REC markets. 2021



74Ranking game (2)

Recall

Subpopulation 1

. . .

Subpopulation k

. . .

Subpopulation K

Provider

Reward = f (rank)

Next step

Competition (Nash) Competition (Nash) Competition (Nash)

Lower level (agents)

Upper level (principal)

✓ Best response
✓ Nash equilibrium

✓ Best response
✓ Nash equilibrium

✓ Best response
✓ Nash equilibrium

Ranking games : Application to Energy Savings C. Alasseur, E. Bayraktar, R. Dumitrescu, Q. Jacquet 11 / 25

1R. Carmona and P. Wang. “Finite-State Contract Theory with a Principal and a Field of Agents”. In: Management Science
67.8 (Aug. 2021), pp. 4725–4741

2R. Elie, T. Mastrolia, and D. Possamäı. “A Tale of a Principal and Many, Many Agents”. In: Mathematics of Operations
Research 44.2 (May 2019), pp. 440–467

3A. Shrivats, D. Firoozi, and S. Jaimungal. Principal agent mean field games in REC markets. 2021



75Ranking game (3)
Results – Uniform elasticity
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76Benett’s inequality

Refined Bennett’s inequality1

Let ξ1, . . . , ξN be N independent random variables. If there exist b, σ ∈ RN such that such that

(i) P[ξk − E[ξk ] ≤ bk ] = 1, k ∈ {1, . . . ,N},
(ii) Var(ξk) ≤ σ2

k , k ∈ {1, . . . ,N}.

Then, introducing γk :=
σ2
k

b2
k
, for all d ≥ 0

∀λ ∈ RN
≥0, ln P [⟨λ, ξ − E[ξ]⟩ ≥ d ] ≤ inf

t≥0

{
−td +

N∑
k=1

ln

(
γke

tλkbk + e−tλkbkγk

1 + γk

)}
. (21)

1A. Nemirovski and A. Shapiro. “Convex Approximations of Chance Constrained Programs”. In: SIAM Journal on
Optimization 17.4 (Jan. 2007), pp. 969–996



77Distributionally robust knapsack problem

max
y∈{0,1}N

πT y s.t sup
F∈D(µ,σ,b)

PF

[
ξT y ≥ c

]
≤ τ

with uncertainty set

D(µ, σ, b) =

F

∣∣∣∣∣∣∣
PF [|ξi − µi | ≤ bi ] = 1, }
EF [ξi ] = µi , i = {1, . . . ,N}
Var(ξi ) ≤ σ2

i

 .

Our approach:

max
y∈{0,1}N

z≥0

πT y s.t
N∑

k=1

z ln

(
γke

yk
z
bk + e−

yk
z
bkγk

1 + γk

)
− z ln(τ) + µT y ≤ c

Comparison with:
■ Hoeffding: max

y∈{0,1}N
πT y s.t

√
2 ln(1/τ)

√
yTBy + µT y ≤ c

■ Chebyshev-Cantelli: max
y∈{0,1}N

πT y s.t
√

1
τ
− 1
√

yTΣy + µT y ≤ c



78Entropic bounds
We define the ℓq-normof a vector x ∈ Rn, p ≥ 1, as:

∥x∥q =

(
n∑

i=1

|xi |q
) 1

q

.

We remind the known lower bounds of ∥x∥0 as ratios of norms (∀x ∈ Rn \{0}):
We introduce a family of bounds generalizing the two previous bounds: for x ̸= 0, and α > 0, define

Bα(x) :=

(
∥x∥1
∥x∥α

) α
α−1

= expHα(p(x)) =

∑
i∈[n]

pi (x)
α

 1
α−1

, p(x) := |x |/∥x∥1.

In particular, B1 simplifies to the exponential of the Shannon entropy.

B1(x) =
∥x∥1∏

i∈[n]

|xi ||xi |/∥x∥1
= ∥x∥1 exp

− 1
∥x∥1

∑
i∈[n]

|x |i log |x |i

 . (22)

Monotonicity according to order α, see e.g. [Cac97]

B∞(x) ≤ · · · ≤ B2 ≤ · · · ≤ B1 ≤ · · · ≤ B0 = ∥x∥0 . (23)



79Metric estimates between Bα and ϵ-cardinality
Let A ⊂ Rn

+. A real-valued function ϕ : Rn
+ → R is said to be Schur-convex (resp. Schur-concave) if

ϕ(x) ≤ ϕ(y) (resp. ϕ(x) ≥ ϕ(y) for any x , y ∈ A satisfying x ≺ y .

Proposition, see [MOA11], Appendix F.3.a (p.532)

The Rényi entropy of an arbitrary α > 0 is Schur-concave.

We define the ϵ-cardinality as
cardϵ(p) = |{i ∈ [n] | pi ≥ ϵ}| . (24)

For any ϵ > 0 and 0 < α ≤ 1, an optimal solution of the problem

min
p∈∆n

{Hα(p) | cardϵ(p) = k} (Pk,n
α,ϵ)

is vn(k, ϵ), defined as

[vn(k, ϵ)]i =


1− (k − 1)ϵ, i = 1

ϵ, 2 ≤ i ≤ k

0, k + 1 ≤ i ≤ n

(25)

and corresponds to an objective value ϕα,ϵ(k).
As a conclusion, cardϵ(p) = k ⇒ Bα(p) ≥ ϕα,ϵ(k), implying that B∞(p) ≤ b ⇒ cardϵ(p) ≤ ϕ−1α,ϵ(b).



80Metric estimates: numerical simulation
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