Cnría HADAMARD

Stackelberg games, optimal pricing and application to electricity markets

Supervised by Stéphane Gaubert, Wim van Ackooij and Clémence Alasseur

Quentin Jacquet

CONTEXT AND MOTIVATIONS

A competitive market

Roadmap

- Chapter 4: Bilevel optimization

A retailer optimizes prices of existing offers by taking into account the rational behavior of customers (choice of the optimal tariff).

■ Chapter 5: Optimal control
A retailer finds an optimal policy to maximize a gain on a period considering the dynamics of the population (shift from one offer to another).

■ Chapter 6: Principal-Agent model A retailer designs an optimal contract (function depending on the consumption level) to a continuum of agents.

Roadmap

- Chapter 4: Bilevel optimization

A retailer optimizes prices of existing offers by taking into account the rational behavior of customers (choice of the optimal tariff).

■ Chapter 5: Optimal control
A retailer finds an optimal policy to maximize a gain on a period considering the dynamics of the population (shift from one offer to another).

■ Chapter 6: Principal-Agent model
A retailer designs an optimal contract (function depending on the consumption level) to a continuum of agents.

Roadmap

■ Chapter 4: Bilevel optimization
A retailer optimizes prices of existing offers by taking into account the rational behavior of customers (choice of the optimal tariff).

- Chapter 5: Optimal control

A retailer finds an optimal policy to maximize a gain on a period considering the dynamics of the population (shift from one offer to another).

■ Chapter 6: Principal-Agent model A retailer designs an optimal contract (function depending on the consumption level) to a continuum of agents.

Roadmap

■ Chapter 4: Bilevel optimization
A retailer optimizes prices of existing offers by taking into account the rational behavior of customers (choice of the optimal tariff).

■ Chapter 5: Optimal control
A retailer finds an optimal policy to maximize a gain on a period considering the dynamics of the population (shift from one offer to another).

- Chapter 6: Principal-Agent model

A retailer designs an optimal contract (function depending on the consumption level) to a continuum of agents.

Stackelberg games ${ }^{1}$

$\max _{x \in \mathcal{X}, y^{*}} F\left(x, y^{*}\right)$
s.t. $\quad y^{*} \in \Psi(x)=\underset{y \in \mathcal{Y}, g(x, y) \leq 0}{\arg \min } f(x, y)$.

Follower Environment Agent

[^0]
Stackelberg games ${ }^{1}$

${ }^{1}$ H. von Stackelberg. "Theory of the Market Economy" (1952)

Stackelberg games ${ }^{1}$

[^1]
STUDY OF CUSTOMERS BEHAVIOR IN BILEVEL PRICING PROBLEMS

Q. J., W. van Ackooij, C. Alasseur, and S. Gaubert. "Quadratic regularization of bilevel pricing problems and application to electricity retail markets". In: European Journal of Operational Research (May 2023)

Actors involved in the market

\rightsquigarrow Nash equilibrium at upper level ${ }^{1}$

[^2]
Actors involved in the market

\leadsto Nash equilibrium at upper level \rightarrow static competition

Actors involved in the market

(Envy-free) Product Pricing problem ${ }^{1}$

Notation:

$\diamond[K]:=\{1 \ldots K\}$ customers segments,
$\diamond[N]$ contracts (the N-th is the alternative),

Variables:

$\diamond x_{n} \in \mathbb{R}^{D}$ price vector for contract n,
$\diamond \mu_{k n}=\left\{\begin{array}{l}1 \text { if segment } k \text { chooses } n, \\ 0 \text { otherwise. }\end{array}\right.$
$\diamond C_{k n}$ cost to supply k if he chooses n,
$\diamond R_{k n}$ reservation price of k for contract n,
$\diamond E_{k n} \in \mathbb{R}_{+}^{D}$ fixed consumption of k.

Unitary profit and utility:

$$
\begin{array}{ll}
\theta_{k n}(x):=\underbrace{\left\langle E_{k n}, x_{n}\right\rangle_{D}}_{\text {electricity invoice }}-\underbrace{C_{k n}}_{\text {cost }}, \theta_{k N}=0 \\
U_{k n}(x):=\underbrace{R_{k n}}_{\text {reservation price }}-\underbrace{\left\langle E_{k n}, x_{n}\right\rangle_{D}}_{\text {electricity invoice }}, U_{k N}=0
\end{array}
$$

Profit-maximization problem:

$$
\left\{\begin{array}{l}
\max _{x \in \mathcal{X}, \mu^{*}} J(x):=\sum_{k \in[K]} \rho_{k}\left\langle\theta_{k}(x), \mu_{k}^{*}\right\rangle_{N} \rightarrow \text { leader } \mathrm{pb} \\
\text { s. t. } \mu_{k}^{*} \in \underset{\mu \in \Delta_{N}}{\arg \max }\left\langle U_{k}(x), \mu_{k}\right\rangle_{N} \rightarrow \text { follower pb }
\end{array}\right.
$$

[^3]
Price complex and instability

Figure: Follower response ${ }^{1}$, $(K=1, N=3)$

Figure: Profit function, $(K=5, N=2)$

[^4]
Price complex and instability

Figure: Follower response ${ }^{1}$, $(K=1, N=3)$

Figure: Profit function, $(K=5, N=2)$

[^5]
Mixed Multinomial Logit model (MMNL)

$$
\begin{cases}\max _{x \in \mathcal{X}, \mu^{*}} & \sum_{k \in[K]} \rho_{k}\left\langle\theta_{k}(x), \mu_{k}^{*}\right\rangle_{N} \\
\text { s. t. } & \mu_{k}^{*} \in \underset{\mu \in \Delta_{N}}{\arg \min }\left\{\begin{array}{l}
-\left\langle U_{k}(x), \mu_{k}\right\rangle_{N} \\
+\frac{1}{\beta}\left\langle\log \left(\mu_{k}\right), \mu_{k}\right\rangle_{N}
\end{array}\right\}\end{cases}
$$

$\rightsquigarrow \mu_{k n}^{*}(x)=e^{\beta U_{k n}(x)} / \sum_{l \in[N]} e^{\beta U_{k l}(x)}$
$\Rightarrow \mu_{k}^{*} \in \operatorname{Int} \Delta_{N}$, no polyhedral complex

Figure: Logit regularization ${ }^{1}(K=5, N=2)$

[^6]| | Customers' response | Resolution |
| ---: | :---: | :--- |
| $[$ Gur+05 $]$ | Deterministic | Complexity results |
| $[$ STM11 $]$ | Deterministic | MILP + heuristics |
| $[$ Fer+16] | Deterministic | MILP + valid cuts |
| $[$ Eyt18 $]$ | Deterministic | Tropical methods |
| $[$ BK19] | Deterministic | Tropical methods |
| $[$ STH07 $]$ | Probabilistic | MILP |
| $[$ GMS15 $]$ | Deterministic | Nonlinear optimization |
| $[$ LH11 $]$ | MNNL | Convex reformulation |
| $[$ Li+19] | MMNL | Heuristics |
| $[$ Hoh20 $]$ | MMNL | Nonlinear optimization |
| This work | Quadratic | MIQP + pivoting heuristics |

Our approach: Quadratic regularization (1)

$$
\begin{aligned}
& \max _{x \in \mathcal{X}, \mu^{*}} \sum_{k \in[K]} \rho_{k}\left\langle\theta_{k}(x), \mu_{k}^{*}\right\rangle_{N} \\
& \text { s.t. } \quad \mu_{k}^{*} \in \underset{\mu \in \Delta_{N}}{\arg \min }\left\{\begin{array}{l}
-\left\langle U_{k}(x), \mu_{k}\right\rangle_{N} \\
+\frac{1}{\beta}\left\langle\log \left(\mu_{k}\right), \mu_{k}\right\rangle_{N}
\end{array}\right\} \\
& \rightsquigarrow \mu_{k n}^{*}(x)=e^{\beta U_{k n}(x)} / \sum_{l \in[N]} e^{\beta U_{k l}(x)}
\end{aligned}
$$

$$
\begin{array}{ll}
\begin{cases}\max _{x \in \mathcal{X}, \mu} & \sum_{k \in[K]} \rho_{k}\left\langle\theta_{k}(x), \mu_{k}^{*}\right\rangle_{N} \\
\text { s. t. } & \mu_{k}^{*} \in \underset{\mu \in \Delta_{N}}{\arg \min }\left\{\begin{array}{l}
-\left\langle U_{k}(x), \mu_{k}\right\rangle_{N} \\
+\frac{1}{\beta}\left\langle\mu_{k}-1, \mu_{k}\right\rangle_{N}
\end{array}\right\}\end{cases} \\
\rightsquigarrow \mu_{k}^{*}(x)=\operatorname{Proj}_{\Delta_{N}}\left(\frac{\beta}{2}\left(U_{k}(x)\right)\right)
\end{array}
$$

Our approach: Quadratic regularization (1)

$$
\begin{cases}\max _{x \in \mathcal{X}, \mu^{*}} & \sum_{k \in[K]} \rho_{k}\left\langle\theta_{k}(x), \mu_{k}^{*}\right\rangle_{N} \\
\text { s. t. } & \mu_{k}^{*} \in \underset{\mu \in \Delta_{N}}{\arg \min }\left\{\begin{array}{l}
-\left\langle U_{k}(x), \mu_{k}\right\rangle_{N} \\
+\frac{1}{\beta}\left\langle\log \left(\mu_{k}\right), \mu_{k}\right\rangle_{N}
\end{array}\right\}\end{cases}
$$

$\rightsquigarrow \mu_{k n}^{*}(x)=e^{\beta U_{k n}(x)} / \sum_{l \in[N]} e^{\beta U_{k l}(x)}$

+ Probabilistic behavior $\left(\mu_{k}^{*} \in \operatorname{Int} \Delta_{N}\right)$
+ Explicit lower response
- No combinatorial structure (non-convex NLP)

$$
\begin{cases}\max _{x \in \mathcal{X}, \mu} & \sum_{k \in[K]} \rho_{k}\left\langle\theta_{k}(x), \mu_{k}^{*}\right\rangle_{N} \\
\text { s.t. } & \mu_{k}^{*} \in \underset{\mu \in \Delta_{N}}{\arg \min }\left\{\begin{array}{l}
-\left\langle U_{k}(x), \mu_{k}\right\rangle_{N} \\
+\frac{1}{\beta}\left\langle\mu_{k}-1, \mu_{k}\right\rangle_{N}
\end{array}\right\}\end{cases}
$$

$\rightsquigarrow \mu_{k}^{*}(x)=\operatorname{Proj}_{\Delta_{N}}\left(\frac{\beta}{2}\left(U_{k}(x)\right)\right)$

+ Probabilistic behavior $\left(\mu_{k}^{*} \in \Delta_{N}\right)$
+ Fast projection algorithms ${ }^{1}$
+ Combinatorial structure (polyhedral complex)

[^7]
Our approach: Quadratic regularization (2)

Figure: Follower response, $(K=1, N=3)$

Figure: Profit function, $(K=5, N=2)$

Theorem:

The decision of the customers remains a polyhedral complex. Moreover, the profit is continuous and concave on each cell of the polyhedral complex.

Customers' response as a polyhedral complex

Envy-free PPP is APX-Hard ${ }^{1}$

Figure: Polyhedral complex with $K=3$ segments and $N=3$ contracts

[^8]
Design of a pivoting heuristic - On an example

Figure: Example with $K=3$ segments and $N=3$ contracts

QPCC reformulation

The follower problem is convex, and can be replaced by KKT conditions:

$$
\begin{aligned}
& \max _{x \in \mathcal{X}, \mu, \eta} \sum_{k \in[K]} \rho_{k} \eta_{k}+\rho_{k}\left\langle R_{k}-C_{k}, \mu_{k}\right\rangle_{N}-2 \beta^{-1} \rho_{k}\left\|\mu_{k}\right\|_{N}^{2} \\
& \text { s.t. } 0 \leq \mu_{k n} \perp 2 \beta^{-1} \mu_{k n}-U_{k n}(x)-\eta_{k} \geq 0, \forall k, n \\
& 0 \leq \mu_{k N} \perp 2 \beta^{-1} \mu_{k}-\eta_{k} \geq 0, \forall k \\
& \mu_{k} \in \Delta_{N}, \forall k
\end{aligned}
$$

This leads to a convex Quadratic Program under Complementarity Constraints (QPCC) ${ }^{12}$
Replace the complementarity constraints by Big- M constraints
\rightsquigarrow MIQP formulation (that can be directly solved by CPLEX for example).

[^9]
Numerical Results

\diamond Up to 50 segments
\diamond Up to 10 contracts

Resolution with several methods

	Det.	MIQP (CPLEX)	Black-box $\left(\right.$ CMA-ES $\left.^{1}\right)$	NLP (FilterMPEC $\left.^{2}\right)$	Our approach
Time	$<10 s$	$>1 h$	$\sim 230 s$	$\sim 15 s$	$\sim 100 s$
Variance	-	-	up to 8%	-	$<1 \%$
Optimum	Gap : 1\%	Gap : 3\%	up to 1% of best	up to 5% of best	best known

[^10]
Test case (1)

1	Base	Standard	Low cost offers (digital-only customer services)		
2	Peak/Off peak	Base	Green		Higher costs, but preferred by some segments
:---					
(higher reservation bill)					

(a) Nominal consumption of segments, over one year. For each segment, the consumption is separated into the Peak period and the Off-peak period.

(b) Weights of segments. For each segment, the size of the section corresponds to the proportion of users in this segment.

Test case (2)

Optimal prices
(Upper decision)

Contract	1	2	3	4
Peak $(€ / \mathrm{kWh})$	0.1693	0.1834	0.1863	0.1895
Off peak $(€ / \mathrm{kWh})$		0.1491	0.1626	
	133.7	129.29	122.95	128.19

Customers distribution ${ }^{1}$ (Lower decision)

[^11]
Optimal control

IMPACT OF SWITCHING COSTS

Q. J., W. van Ackooij, C. Alasseur, and S. Gaubert. "Ergodic control of a heterogeneous population and application to electricity pricing". In: 2022 IEEE 61st Conference on Decision and Control (CDC). 2022

The consumer' decision at time t

énergie-info - Le comparateur d'offres d'électricité et de gaz naturel du médiateur national de l'énergie	$\substack{\text { Assisfonce } \\ \text { malvorant }}$

Figure: Example of price comparison engine (French electricity market)

Inst. reward $r\left(x^{(t)}, \mu^{(t)}\right)$

Bilevel pricing at time t

1. Distribution: $\mu_{k}^{(t)} \in \Delta_{N}$ the distribution of the population of cluster k over [N].
2. Instantaneous reward: $r:\left(x^{(t)}, \mu^{(t)}\right) \mapsto \sum_{k \in[K]} \rho_{k}\left\langle\theta_{k}\left(x^{(t)}\right), \mu_{k}^{(t)}\right\rangle_{N} \leftarrow$ upper objective at time t
3. (Linear) Transition: $\mu_{k}^{(t)}=\mu_{k}^{(t-1)} P_{k}\left(x^{(t)}\right) \leftarrow$ lower decision at time t
4. Leader's (global) objective (average long-term reward):

$$
\begin{equation*}
g^{*}\left(\mu^{(0)}\right)=\sup _{\pi \in \Pi} \liminf _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} r\left(\pi_{t}\left(\mu^{(t)}\right), \mu^{(t)}\right) . \tag{AvR}
\end{equation*}
$$

[^12]
Specification to the Electricity Market context

Main example: The transition probability follows a logit response ${ }^{1}$:

$$
\left[P_{k}(x)\right]_{n, m}=\frac{e^{\beta\left[U_{k m}(x)+\gamma_{k n} \mathbb{1}_{m=n}\right]}}{\sum_{l \in[N]} e^{\beta\left[U_{k l}(x)+\gamma_{k n} \mathbb{1}_{l=n}\right]}}>0
$$

- $\gamma_{k n}$ is the cost for segment k to switch from contract n to another one,

■ β is the intensity of the choice (it can represent a "rationality parameter").

Link with static model: if a representative agent chooses the contract n at time $t-1$, then

$$
\mu_{k}^{(t)} \in \underset{\mu \in \Delta_{N}}{\arg \max }\left\{\left\langle U_{k}\left(x^{(t)}\right)+\gamma_{k n} \mathbb{1} .=n, \mu_{k}^{(t)}\right\rangle_{N}-\frac{1}{\beta}\left\langle\log \left(\mu_{k}\right), \mu_{k}\right\rangle_{N}\right\}
$$

[^13]
Ergodic control

Let $\mathcal{D}_{k}:=\operatorname{vex}\left(\left\{\mu_{k} P_{k}(x) \mid x \in \mathcal{X}, \mu_{k} \in \Delta_{N}\right\}\right)$,

and $\mathcal{D}=X_{k \in[K]} \mathcal{D}_{k}$.

Lemma

$\mathcal{D}_{k} \subseteq$ relint Δ_{N}^{K}.
Moreover, for $t \geq 1, \mu^{(t)} \in \mathcal{D}$ for any policy $\pi \in \Pi$.
For $v: \Delta_{N}^{K} \rightarrow \mathbb{R}$, the Bellman operator \mathcal{B} is

$$
\mathcal{B} v(\mu)=\max _{x \in \mathcal{X}}\{r(x, \mu)+v(\mu P(x))\}
$$

Theorem

The ergodic eigenproblem

$$
g \mathbb{1}_{\mathcal{D}}+h=\mathcal{B} h
$$

admits a solution $g^{*} \in \mathbb{R}$ and h^{*} Lipschitz and convex on \mathcal{D}.
Moreover, g^{*} satisfies (AvR), and $x^{*}(\cdot) \in \arg \max \mathcal{B} h^{*}$ defines an optimal policy.

Deterministic MDP without controllability - the most degenerate case

	Time	Transitions	Assumption	
[Sch85]	discrete	stochastic	unichain ${ }^{3}$	
[Bis15]	discrete	stochastic	Doeblin / minorization ${ }^{4}$	
[MN02]	discrete	deterministic	quasi-compactness	
[Fat08]	continuous	deterministic	controlability ${ }^{5}$	weak-KAM
[Zav12]	discrete	deterministic	controlability	
[CGG14]	continuous	deterministic	contraction of the dynamics (A2)	
This work	discrete	deterministic	contraction of the dynamics (A2)	

Standard unichain/Doeblin type conditions entail that the eigenvector is unique, up to an additive constant, this is no longer true in our case.

[^14]
Ergodic control - Sketch of the proof (existence)

We use a contraction argument directly on the dynamics (not on the Bellman Operator): Let d_{H} be the Hilbert's projective metric defined as

$$
d_{H}(u, v)=\max _{1 \leq i, j \leq n} \log \left(\frac{u_{i}}{v_{i}} \frac{v_{j}}{u_{j}}\right) .
$$

(\mathcal{D}, d_{H}) is a complete metric space.

Birkhoff theorem

Every matrix $Q \gg 0$ is a contraction in Hilbert's projective metric, i.e.,

$$
\forall \mu, \nu \in\left(\mathbb{R}_{>0}^{N}\right), d_{H}(\mu Q, \nu Q) \leq \kappa_{Q} d_{H}(\mu, \nu)
$$

where $\kappa_{Q}:=\tanh \left(\operatorname{Diam}_{H}(Q) / 4\right)<1$.
We then use the method of vanishing discount approach ${ }^{1}$:
\rightarrow the family of α-discounted objective function $\left(V_{\alpha}(\cdot)\right)_{\alpha}$ is equi-Lipschitz, which entails the existence of the eigenvector by a compactness argument.

[^15]
Policy Iteration

\diamond Regular grid $\Sigma=\left(\hat{\mu}_{\vec{i}}\right)_{\vec{i} \in[M]^{K}}$ of the simplex Δ_{N}^{K},
\diamond Bellman Operator \mathcal{B}^{Σ} using semi-lagrangian discretization (closest neighbor).

```
Algorithm Policy Iteration with on-the-fly transition generation
Require: Local grid \(\Lambda\), local transitions \(\left(T^{\wedge, k}\right)_{k \in[K]}\), initial decision vector \(\hat{d}^{\prime}\)
    : do
2: \(\quad \hat{d} \leftarrow \hat{d}^{\prime}\)
3: \(\hat{g}, \hat{h}\) solution of \(\left\{\begin{array}{l}\hat{g}+\hat{h}_{\vec{i}}=r\left(\hat{d}_{\vec{i}}, \hat{\mu}_{\vec{i}}\right)+\hat{h}_{\vec{j}}, \vec{i} \in \Sigma \\ \vec{j}=T^{\Sigma}\left(\vec{i}, \hat{d}_{\vec{i}}\right)\end{array} \quad \triangleright\right.\) Policy Evaluation
4: \(\quad\) for \(\vec{i} \in \Sigma\) do
5: \(\quad \hat{d}_{\vec{i}}^{\prime} \leftarrow \arg \min _{x \in \mathcal{X}}\left\{r\left(x, \hat{\mu}_{\vec{i}}\right)+\hat{h}_{\vec{j}}\right.\) s.t. \(\left.\vec{j}=T^{\Sigma}(\vec{i}, x) \quad\right\} \quad\) Policy Improvement
6: end for
7: while \(\hat{d}^{\prime} \neq \hat{d}\)
8: return \(\hat{g}, \hat{d}\)
```

[^16]
Policy Iteration

\diamond Regular grid $\Sigma=\left(\hat{\mu}_{\vec{i}}\right)_{\vec{i} \in[M]^{K}}$ of the simplex Δ_{N}^{K},
\diamond Bellman Operator \mathcal{B}^{Σ} using semi-lagrangian discretization (closest neighbor).
\diamond On-the-fly generation of transitions, refining the combinatorial version of Howard's scheme ${ }^{1}$.

[^17]
Numerical results

Instance	(node, arcs)	RVI (with K.-M. damping)	PI (combinatorial)	This work
$K=1, N=1$	$(2 \mathrm{e} 3,2.5 \mathrm{e} 6)$	70 s	1 s	0.2 s
$\delta_{\mu}=1 / 2000$		0.8 Mo	30 Mo	9 Mo
$K=2, N=2$	$7.4 \mathrm{e} 5,6.9 \mathrm{e} 8)$	7 h	390 s	70 s
$\delta_{\mu}=1 / 50$		13 Go	103 Mo	

Table: Comparison with combitorial Howard algorithm ${ }^{1}$ and RVI with Krasnoselskii-Mann damping ${ }^{2,3}$.

[^18]
Impact of switching costs γ on toy model

"Turnpike" like strategy: Attraction to a steady-state

(a) Optimal finite horizon trajectory (provider action and customer distribution) for low switching cost.

Cyclic strategy:

A promotion is periodically applied

(b) Optimal finite horizon trajectory (provider action and customer distribution) for high switching cost.
\hookrightarrow Confirms optimality of periodic promotions, already observed in Economics

IMPACT OF THE SIZE OF THE MENU

Q. J., W. van Ackooij, C. Alasseur, and S. Gaubert. "A Quantization Procedure for Nonlinear Pricing with an Application to Electricity Markets". To appear in: 2023 IEEE 62nd Conference on Decision and Control (CDC)

Evolutions in the model

Evolutions in the model

Evolutions in the model

Continuum of Followers

$$
\int_{\mathcal{E}} \rho(e) \mathrm{d} e=1
$$

Multi-Follower

Each agent is defined by a vector of characteristics $e \in \mathcal{E} \subseteq \mathbb{R}_{\geq 0}^{D}$.

The Monopolist problem ${ }^{1}$

Assumption: (Continuum of offers).
The leader constructs a continuum of offers, where each offer is especially designed for a type e $\in \mathcal{E}$:

$$
\left(p_{i}, q_{i}\right)_{1 \leq i<N} \rightsquigarrow(p(e), q(e))_{e \in \mathcal{E}}
$$

Optimality at the lower level:
The leader ensures that $(p(e), q(e))$ is selected by e by an Incentive-compatibility condition :

$$
\begin{equation*}
u\left(e_{2}\right)-u\left(e_{1}\right) \geq\left\langle e_{1}-e_{2}, q\left(e_{1}\right)\right\rangle, \forall e_{1}, e_{2} \in \mathcal{E} \tag{IC}
\end{equation*}
$$

with $u(e)=-p-\langle q(e), e\rangle$.

Exemple with "Tarif Bleu" $(D=2)$

$(I C)$ condition \Longleftrightarrow for a consumption $e_{2}, \underbrace{p\left(e_{2}\right)+\left\langle e_{2}, q\left(e_{2}\right)\right\rangle}_{\text {Invoice with contract } e_{2}} \leq \underbrace{p\left(e_{1}\right)+\left\langle e_{2}, q\left(e_{1}\right)\right\rangle}_{\text {Invoice with contract } e_{1}}$ (contract e_{2} really preferred by agent e_{2} compared to any other contract e_{1}).

[^19]
A Convex Pricing Problem

The aim of the monopolist is then to maximize a revenue function, defined as

$$
\begin{equation*}
J(u, q):=\int_{\mathcal{E}} L(e, u(e), q(e)) \mathrm{d} e-C\left(\int_{\mathcal{E}} M(e, q(e)) \mathrm{d} e\right) \tag{1}
\end{equation*}
$$

In addition to (IC), $u(e)$ must be greater than a reservation utility:

$$
\begin{equation*}
u(e) \geq R(e) \tag{IR}
\end{equation*}
$$

The problem solved by the monopolist is then

$$
\max _{u, q}\left\{\begin{array}{l|l}
J(u, q) & \begin{array}{l}
u, q \text { satisfy }(I C),(I R) \\
(u(e), q(e)) \in U_{e} \times Q \text { for } e \in \mathcal{E}
\end{array} \tag{R.-C.}
\end{array}\right\}
$$

Theorem

If L is linear, M is strictly convex in q, and C is increasing and strictly convex, then Problem (R.-C.) has a unique optimal solution.

Objective: Quantization of the menu of contracts

Objective: Quantization of the menu of contracts

Difficulty:
The multi-attribute PPP problem with elasticity (big-M formulation) is already challenging for more than 10 customers.

Objective: Quantization of the menu of contracts

Alternative approach ${ }^{1}$:
Find the "best" approximation of the infinite-size menu of offers by a (small) prescribed number of contracts, i.e.,

Approximate $\quad(p(e), q(e))_{e \in \mathcal{E}} \quad$ by N contracts $\quad\left(\hat{p_{i}}, \hat{q}_{i}\right)_{1 \leq i \leq N}$.

[^20]
"Quantization" of the utility function

Step 1: Solve Problem (R.-C.)
\diamond Solve the problem on a discretization grid Σ of \mathcal{E}^{1}.
\diamond We obtain a discretized infinite-size menu $\left(\hat{p}_{i}, \hat{q}_{i}\right)_{i \in \Sigma}$.
The utility \hat{u}_{Σ} is then defined as

$$
\hat{u}_{S}(e)=\bigvee_{i \in S} \hat{u}_{i}(e), \quad S \subseteq \Sigma
$$

$$
\text { where } \hat{u}_{i}: e \in \mathcal{E} \mapsto-\left\langle\hat{q}_{i}, e\right\rangle_{D}-\hat{p}_{i} \quad \text { ("basis function") }
$$

1 e.g., G. Carlier and X. Dupuis. "An iterated projection approach to variational problems under generalized convexity constraints". In: Applied Mathematics and Optimization 76.3 (2017), pp. 565-592

"Quantization" of the utility function

Step 1: Solve Problem (R.-C.)
\diamond Solve the problem on a discretization grid Σ of \mathcal{E}^{1}.
\diamond We obtain a discretized infinite-size menu $\left(\hat{p}_{i}, \hat{q}_{i}\right)_{i \in \Sigma}$.
The utility \hat{u}_{Σ} is then defined as

$$
\hat{u}_{S}(e)=\bigvee_{i \in S} \hat{u}_{i}(e), \quad S \subseteq \Sigma
$$

where $\hat{u}_{i}: e \in \mathcal{E} \mapsto-\left\langle\hat{q}_{i}, e\right\rangle_{D}-\hat{p}_{i} \quad$ ("basis function")

Step 2: Select from the $|\Sigma|$ contracts the N "best" contracts

$$
\begin{equation*}
\min _{S \subseteq \Sigma}\left\{\text { "Distance" }\left(\hat{u}_{S}, \hat{u}_{\Sigma}\right) \text { s.t. }|S| \leq N\right\} . \tag{2}
\end{equation*}
$$

[^21]
Importance metric

$$
\begin{equation*}
\min _{S \subseteq \Sigma}\left\{d\left(\hat{u}_{S}, \hat{u}_{\Sigma}\right) \text { s.t. }|S| \leq N\right\} \tag{3}
\end{equation*}
$$

1. $L_{\infty}\left(\right.$ resp. $\left.L_{1}\right)$ norm: $\quad d_{\infty}(u, v)=\|u-v\|_{L_{\infty}(X)}\left(\right.$ resp. $\left.d_{1}(u, v)=\|u-v\|_{L_{1}(X)}\right)$,
2. J-based criterion: $\quad d_{J}(u, v)=J\left(v, q_{v}\right)-J\left(u, q_{u}\right) . \quad(\leftrightarrow \text { maximization of revenue })^{6}$.

Definition (Importance metric) ${ }^{7}$

$$
\begin{equation*}
\nu(S, i)=d\left(\hat{u}_{S \backslash\{i\}}, \hat{u}_{S}\right) . \tag{4}
\end{equation*}
$$

This corresponds to an incremental version of the criteria (3).
$\rightarrow\left(L_{\infty} / L_{1}\right)$: it expresses the difference between the "shape" of \hat{u}_{S} with and without \hat{u}_{i}
\rightarrow (J-based): it expresses the loss of revenue when contract i is removed.
${ }^{6} q_{u}:=-\nabla u$, see J.-C. Rochet and P. Choné. "Ironing, sweeping, and multidimensional screening". In: Econometrica (1998), pp. 783-826
${ }^{7}$ W. M. McEneaney, A. Deshpande, and S. Gaubert. "Curse-of-complexity attenuation in the curse-of-dimensionality-free method for HJB PDEs". In: 2008 American Control Conference. IEEE, June 2008

Greedy descent approach

"One-shot procedure"	[MDG08]	Sort the importance metric and keep the n "most important" basis functions.
"Greedy ascent approach"	[GMQ11]	Iteratively add the "most important" basis function to S.
"Bundle-based pruning"	[GQS14]	Introduction of bundle methods for time reduction.

Here, Greedy descent approach:
(i) $S \leftarrow \Sigma$
(ii) While $|S|>n$,

This pruning problem is a

1. For each $i \in S$, compute $\nu(S, i)$. continuous version of the facility
2. Sort the importance metric and remove the "least important" basis function.

Pros: More accurate pruning (reduction of the approximation error)
Cons: More time consuming (recomputation of the importance metric at each step)

[^22]
1D Example

Maximization diagram :
Subdivision of \mathcal{E} in cells

$$
V_{i}=\left\{e \in \mathcal{E} \mid \hat{u}_{i}(e) \geq \hat{u}_{j}(e), \forall j \in S\right\}
$$

1D Example

L_{1} importance metric:

L_{∞} importance metric:

$$
\begin{aligned}
& \nu(S, 3)=\hat{\imath} \\
& \nu(S, 5)=\hat{\boldsymbol{\imath}}
\end{aligned}
$$

1D Example

L_{1} importance metric:

L_{∞} importance metric:

$$
\begin{aligned}
& \nu(S, 3)=\uparrow \\
& \nu(S, 5)=\uparrow
\end{aligned}
$$

Key point : When \hat{u}_{4} is removed, only $\nu(S, 3)$ and $\nu(S, 5)$ change (neighboring cells).

L_{1} and J-based case

The blue polyhedron corresponds to $F_{1,-10} \cap V_{10}$

Customers decision as a Maximization diagram (polyhedral complex):

For a set S of contracts,
$\diamond V_{i}=\left\{e \in \mathcal{E} \mid \hat{u}_{i}(e) \geq \hat{u}_{j}(e), \forall j \in S\right\}$
($=$ customers who choose contract i),
Menu of 10 contracts

$\diamond F_{j,-i}$ is the future cell of j if i is removed, i.e., $F_{j,-i}=\left\{e \in \mathcal{E} \mid \hat{u}_{j}(e) \geq \hat{u}_{k}(e), \forall k \neq i \in S\right\}$

Three routines are used:
$\diamond \operatorname{Vrep}(S, i)$ returns the representation by vertices of V_{i} (reverse search algorithm lrs),
\diamond UPDATENEIGHBORS updates the neighbors of each cell knowing the vertex representation,
\diamond updateImpMetric updates $\nu(S, i)$ for all $i \in I$.

L_{1} and J-based case

Algorithm 2: Pruning with local update

Require: N

for $i \in \Sigma$ do
$V_{i} \leftarrow \operatorname{Vrep}(\Sigma, i) \quad$ Initial Vertex representation
end for
$S \leftarrow \Sigma$
$I \leftarrow \Sigma \quad \triangleright$ Index of problems to recompute
for $t=1:|\Sigma|-N$ do
7: $\quad\left(J_{i}\right)_{i \in I} \leftarrow$ updateNeighbors $\left(\left(V_{i}\right)_{i \in I}\right)$
8: \quad for $i \in I, j \in J_{i}$ do
9: $\quad F_{j,-i} \leftarrow \operatorname{VREP}(S \backslash\{i\}, j)$
\triangleright Future cells
10: end for
11: $\quad \nu \leftarrow$ updateImpMetric $\left(I,\left(V_{i}\right)_{i \in S},\left(F_{j,-i}\right)_{j \in J_{i}, i \in S}\right)$

12: $\quad r \leftarrow \arg \min _{i \in S} \nu_{i} \quad \triangleright$ Contract to remove ("least important" one)
13: $\quad S \leftarrow S \backslash\{r\}$
14: \quad for $j \in J_{r}$ do
15: $\quad V_{j} \leftarrow F_{j,-r} \quad \triangleright$ Update Vertex representation
16: end for
17: $\quad I \leftarrow J_{r}$
18: end for
19: return S

Algorithm example

Complexity results

Proposition

The importance metric of a contract $i \in S$ stays unchanged when we remove a contract j which is not in the neighborhood of i, i.e., $\nu(S \backslash\{j\}, i)=\nu(S, i)$ for $j \in S \backslash J_{i}$.

Proposition (Critical steps)

Suppose that $\left|J_{i}\right| \leq m$ (maximum number of neighbors of a cell during the execution).

$$
\begin{gathered}
\text { \# calls to } \operatorname{VREP}(S, i) \\
O\left(m|\Sigma|^{2}\right) \rightsquigarrow O\left(m^{2}|\Sigma|\right)
\end{gathered}
$$

Remark: reverse search has an incremental running time of $O(|\Sigma| d)$ per vertex if the input is nondegenerate ${ }^{1}$.

[^23]
Numerical results

Objective of the retailer:
Finding the minimum number of contracts needed to obtain a loss of revenue lower than a target.

Figure: Comparison of error bounds.
(g) stands for global update while (I) stands for local update.

Other contributions

\diamond Chapter 7: Principal-Multi-Agent model ${ }^{1}$
Design of a rank-based reward for energy savings purposes.
\diamond Chapter 8: Chance-Constrained Programming ${ }^{2}$
Study of distributionally robust models using Bennett-type concentration inequalities.
\diamond Chapter 9: Sparse optimization ${ }^{3}$
Study of entropic lower bounds for sparse optimization using Schur convexity.

[^24]
Perspectives

\diamond Elasticity of the demand:
\rightarrow Extend to more general cases than iso-elasticity.
\diamond Link between turnpike properties and weak-KAM theory:
\rightarrow Extend the results of convergence to Aubry set (using strict-dissipativity) to non-controllable cases.
\diamond Partial participation:
\rightarrow Extend the quantization methods to partial participation of the consumers.
\diamond Bounds for the approximation error made with the quantization approach:
\rightarrow Classical approximation results do not apply in our context.

References I

[FST78] A. Federgruen, P. Schweitzer, and H. Tijms. "Contraction mappings underlying undiscounted Markov decision problems". In: Journal of Mathematical Analysis and Applications 65.3 (Oct. 1978), pp. 711-730.
[Sch85] P. J. Schweitzer. "On undiscounted Markovian decision processes with compact action spaces". In: RAIRO-Operations Research 19.1 (1985), pp. 71-86.
[LPV87] P.-L. Lions, G. Papanicolaou, and S. Varadhan. "Homogenization of Hamilton-Jacobi equation". Jan. 1987.
[Lov91] W. S. Lovejoy. "Computationally Feasible Bounds for Partially Observed Markov Decision Processes". In: Operations Research 39.1 (Feb. 1991), pp. 162-175.
[Cac97] C. Cachin. "Entropy measures and unconditional security in cryptography". PhD thesis. ETH Zurich, 1997.

References II

[Coc +98$]$ J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. McGettrick, and J.-P. Quadrat. "Numerical Computation of Spectral Elements in Max-Plus Algebra". In: IFAC Proceedings Volumes 31.18 (July 1998), pp. 667-674.
[LMS98] M. Labbé, P. Marcotte, and G. Savard. "A bilevel model of taxation and its application to optimal highway pricing". In: Management science 44 (1998), pp. 1608-1622.
[RC98] J.-C. Rochet and P. Choné. "Ironing, sweeping, and multidimensional screening". In: Econometrica (1998), pp. 783-826.
[Avi00] D. Avis. "A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm". In: Polytopes - Combinatorics and Computation. Ed. by G. Kalai and G. M. Ziegler. Basel: Birkhäuser Basel, 2000, pp. 177-198.
[MN02] J. Mallet-Paret and R. Nussbaum. "Eigenvalues for a Class of Homogeneous Cone Maps Arising from Max-Plus Operators". In: Discrete and Continuous Dynamical Systems 8.3 (2002), pp. 519-562.

References III

[Ban+05] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. "Clustering with Bregman Divergences". In: Journal of Machine Learning Research 6.58 (2005), pp. 1705-1749.
[Gur+05] V. Guruswami, J. D. Hartline, A. R. Karlin, D. Kempe, C. Kenyon, and F. McSherry. "On profit-maximizing envy-free pricing.". In: SODA. Vol. 5. 2005, pp. 1164-1173.
[Han06] N. Hansen. "The CMA evolution strategy: a comparing review". In: Towards a new evolutionary computation. Advances on estimation of distribution algorithms. New York: Springer, 2006, pp. 75-102.
[NS07] A. Nemirovski and A. Shapiro. "Convex Approximations of Chance Constrained Programs". In: SIAM Journal on Optimization 17.4 (Jan. 2007), pp. 969-996.
[STH07] R. Shioda, L. Tunçel, and B. Hui. "Applications of deterministic optimization techniques to some probabilistic choice models for product pricing using reservation prices". In: Pacific Journal of Optimization 10 (Mar. 2007).

References IV

[Fat08] A. Fathi. "The weak-KAM theorem in Lagrangian dynamics, Preliminary Version Number 10". https://www.math.u-bordeaux.fr/~pthieull/ Recherche/KamFaible/Publications/Fathi2008_01.pdf. 2008.
[MDG08] W. M. McEneaney, A. Deshpande, and S. Gaubert. "Curse-of-complexity attenuation in the curse-of-dimensionality-free method for HJB PDEs". In: 2008 American Control Conference. IEEE, June 2008.
[BNN10] J.-D. Boissonnat, F. Nielsen, and R. Nock. "Bregman Voronoi Diagrams". In: Discrete and Computational Geometry 44.2 (Apr. 2010), pp. 281-307.
[LM10] S. Leyffer and T. Munson. "Solving multi-leader-common-follower games". In: Optimization Methods and Software 25.4 (2010), pp. 601-623.
[GMQ11] S. Gaubert, W. McEneaney, and Z. Qu. "Curse of dimensionality reduction in max-plus based approximation methods: Theoretical estimates and improved pruning algorithms". In: IEEE Conference on Decision and Control and European Control Conference. IEEE, Dec. 2011.

References V

[LH11] H. Li and W. Huh. "Pricing Multiple Products with the Multinomial Logit and Nested Logit Models: Concavity and Implications". In: Manufacturing and Service Operations Management 13 (Oct. 2011), pp. 549-563.
[MOA11] A. W. Marshall, I. Olkin, and B. C. Arnold. Inequalities: Theory of Majorization and Its Applications. Springer New York, 2011.
[STM11] R. Shioda, L. Tunçel, and T. Myklebust. "Maximum utility product pricing models and algorithms based on reservation price". In: Computational Optimization and Applications 48 (Mar. 2011), pp. 157-198.
[Pin12] R. S. Pindyck. "Uncertain outcomes and climate change policy". In: Journal of Environmental Economics and Management 63.3 (May 2012), pp. 289-303.
[Zav12] M. Zavidovique. "Strict sub-solutions and Mañé potential in discrete weak KAM theory". In: Commentarii Mathematici Helvetici (2012), pp. 1-39.
[BMP13] L. Bai, J. Mitchell, and J.-S. Pang. "On convex quadratic programs with linear complementarity constraints". In: Computational Optimization and Applications 54 (Apr. 2013).

References VI

[CGG14] V. Calvez, P. Gabriel, and S. Gaubert. "Non-linear eigenvalue problems arising from growth maximization of positive linear dynamical systems". In: Proceedings of the 53rd IEEE Annual Conference on Decision and Control (CDC), Los Angeles. 2014, pp. 1600-1607.
[GQS14] S. Gaubert, Z. Qu, and S. Sridharan. "Bundle-based pruning in the max-plus curse of dimensionality free method". In: Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems July 7-11, 2014. Groningen, The Netherland. 2014, pp. 166-172.
[Bis15] A. Biswas. Mean Field Games with Ergodic cost for Discrete Time Markov Processes. 2015.
[GMS15] F. Gilbert, P. Marcotte, and G. Savard. "A Numerical Study of the Logit Network Pricing Problem". In: Transportation Science 49 (Jan. 2015),
p. 150105061815001.
[Con16] L. Condat. "Fast Projection onto the Simplex and the I1 Ball". In: Mathematical Programming, Series A 158.1 (July 2016), pp. 575-585.

References VII

[Fer+16] C. G. Fernandes, C. E. Ferreira, A. J. Franco, and R. C. Schouery. "The envy-free pricing problem, unit-demand markets and connections with the network pricing problem". In: Discrete Optimization 22 (2016), pp. 141-161.
[Mir16] J.-M. Mirebeau. "Adaptive, anisotropic and hierarchical cones of discrete convex functions". In: Numerische Mathematik 132.4 (2016), pp. 807-853.
[CD17] G. Carlier and X. Dupuis. "An iterated projection approach to variational problems under generalized convexity constraints". In: Applied Mathematics and Optimization 76.3 (2017), pp. 565-592.
[PE17] P. Pavlidis and P. B. Ellickson. "Implications of parent brand inertia for multiproduct pricing". In: Quantitative Marketing and Economics 15.4 (July 2017), pp. 369-407.
[Eyt18] J.-B. Eytard. "A tropical geometry and discrete convexity approach to bilevel programming: application to smart data pricing in mobile telecommunication networks". PhD thesis. Université Paris-Saclay, 2018.

References VIII

[BK19] E. Baldwin and P. Klemperer. "Understanding preferences:"demand types", and the existence of equilibrium with indivisibilities". In: Econometrica 87.3 (2019), pp. 867-932.
[EMP19] R. Elie, T. Mastrolia, and D. Possamaï. "A Tale of a Principal and Many, Many Agents". In: Mathematics of Operations Research 44.2 (May 2019), pp. 440-467.
[Li+19] H. Li, S. Webster, N. Mason, and K. Kempf. "Product-Line Pricing Under Discrete Mixed Multinomial Logit Demand". In: Manufacturing and Service Operations Management 21 (2019), pp. 14-28.
[Ala+20] C. Alasseur, I. Ekeland, R. Élie, N. H. Santibáñez, and D. Possamaï. "An Adverse Selection Approach to Power Pricing". In: SIAM Journal on Control and Optimization 58.2 (Jan. 2020), pp. 686-713.
[GS20] S. Gaubert and N. Stott. "A convergent hierarchy of non-linear eigenproblems to compute the joint spectral radius of nonnegative matrices". In: Mathematical Control \& Related Fields 10.3 (2020), pp. 573-590.

References IX

[Hoh20] S. Hohberger. "Dynamic pricing under customer choice behavior for revenue management in passenger railway networks". PhD thesis. Universität Mannheim, 2020.
[Jar+20] F. Jara-Moroni, J. Mitchell, J.-S. Pang, and A. Wächter. "An enhanced logical benders approach for linear programs with complementarity constraints". In: Journal of Global Optimization 77 (May 2020).
[BYZ21] D. Bergemann, E. Yeh, and J. Zhang. "Nonlinear pricing with finite information". In: Games and Economic Behavior 130 (Nov. 2021), pp. 62-84.
[CW21] R. Carmona and P. Wang. "Finite-State Contract Theory with a Principal and a Field of Agents". In: Management Science 67.8 (Aug. 2021), pp. 4725-4741.
[SFJ21] A. Shrivats, D. Firoozi, and S. Jaimungal. Principal agent mean field games in REC markets. 2021.
[Ala+22] C. Alasseur, E. Bayraktar, R. Dumitrescu, and Q. J. A Rank-Based Reward between a Principal and a Field of Agents: Application to Energy Savings. preprint. 2022.

References X

[J+22a] Q. J., A. Bialecki, L. E. Ghaoui, S. Gaubert, and R. Zorgati. "Entropic Lower Bound of Cardinality for Sparse Optimization". Nov. 2022.
[J+22b] Q. J., W. van Ackooij, C. Alasseur, and S. Gaubert. "Ergodic control of a heterogeneous population and application to electricity pricing". In: 2022 IEEE 61st Conference on Decision and Control (CDC). 2022.
[JZ22] Q. J. and R. Zorgati. Tight Bound for Sum of Heterogeneous Random Variables: Application to Chance Constrained Programming. 2022.
[MP22] M. Motte and H. Pham. "Mean-field Markov decision processes with common noise and open-loop controls". In: The Annals of Applied Probability 32.2 (Apr. 2022).
[Aki+23] M. Akian, S. Gaubert, U. Naepels, and B. Terver. Solving irreducible stochastic mean-payoff games and entropy games by relative Krasnoselskii-Mann iteration. 2023.

References XI

[BLS23] Y. Beck, I. Ljubić, and M. Schmidt. "A survey on bilevel optimization under uncertainty". In: European Journal of Operational Research (Feb. 2023).
[J+23] Q. J., W. van Ackooij, C. Alasseur, and S. Gaubert. "Quadratic regularization of bilevel pricing problems and application to electricity retail markets". In: European Journal of Operational Research (May 2023).
[J+] Q. J., W. van Ackooij, C. Alasseur, and S. Gaubert. "A Quantization Procedure for Nonlinear Pricing with an Application to Electricity Markets". To appear in: 2023 IEEE 62nd Conference on Decision and Control (CDC).

Thank you for your attention
Questions?

KKT transformation

The follower problem is linear, and can be replaced by KKT conditions:

$$
\begin{aligned}
& \max _{x \in \mathcal{X}, \mu, \eta} \sum_{k \in[k]} \rho_{k} \eta_{k}+\rho_{k}\left\langle R_{k}-C_{k}, \mu_{k}\right\rangle_{N} \\
& \text { s.t. } 0 \leq \mu_{k n} \perp U_{k n}(x)+\eta_{k} \leq 0, \forall \\
& 0 \leq \mu_{k N} \perp \eta_{k} \leq 0, \forall k \\
& \mu_{k} \in \Delta_{N}, \forall k
\end{aligned}
$$

This leads to a Linear Program under Complementarity Constraints (LPCC).
Usually, compl. constraints replaced by Big- M constraints \rightsquigarrow MILP formulations ${ }^{12}$

[^25]
Impact of the regularization intensity

Figure: Optimal value as a function of the rationality parameter β.
'Logit': model under logit response, 'Quad.': model under quadratic response
'Det': objective value obtained with the optimal deterministic prices but under quadratic response.

Impact of the regularization intensity

Theorem:

For the standard MNL model $(K=1)$,

1. $\lim _{\beta \rightarrow 0}\left(\beta v_{\beta}\right)=\mathcal{W}_{0}((N-1) / e) ;$ where \mathcal{W}_{0} denotes the Lambert function.
2. if $v_{\infty}>0$ then $v_{\beta} \underset{\beta \rightarrow+\infty}{=} v_{\infty}-\frac{\ln \left(\beta v_{\infty}\right)}{\beta}+\frac{\ln \left(\# v_{\infty}\right)-1}{\beta}+o\left(\frac{1}{\beta}\right)$.

Bilevel optimization with uncertainty ${ }^{1}$

Here-and-now leader	Gumbell uncertainty	Wait-and-see follower	
x	\curvearrowright	$\widetilde{U}_{k n}(x, \varepsilon)=U_{k n}(x)+\varepsilon_{k n}$	\curvearrowright
$y_{k n}(x, \varepsilon)=\mathbb{1}_{\left(\widetilde{U}_{k n}(x, \varepsilon)>\widetilde{U}_{k m}(x, \varepsilon), m \neq n\right)}$			

Risk-neutral leader:

$$
\max _{x \in \mathcal{X}} \mathbb{E}_{\varepsilon}\left[\sum_{k \in[K]} \rho_{k}\left\langle\theta_{k}(x), y_{k}^{*}\right\rangle_{N}\right]=\max _{x \in \mathcal{X}} \sum_{k \in[K]} \rho_{k}\left\langle\theta_{k}(x), \mu_{k}^{*}\right\rangle_{N}
$$

where $\mu_{k n}^{*}=\mathbb{P}\left[\widetilde{U}_{k n}(x, \varepsilon)>\widetilde{U}_{k m}(x, \varepsilon), m \neq n\right]$.

[^26]
Relative Value Iteration with Krasnoselskii-Mann damping

\diamond Regular grid Σ of the simplex Δ_{N}^{K},
\diamond Bellman Operator \mathcal{B}^{Σ} using Freudenthal triangulation ${ }^{1}$.

Algorithm RVI with Mann-type iterates
Require: $\Sigma, \mathcal{B}^{\Sigma}, \hat{h}_{0}$
1: Initialize $\hat{h}=\hat{h}_{0}, \hat{h}^{\prime}(\mu)=\mathcal{B}^{\Sigma} \hat{h}$
while $\operatorname{Span}\left(\hat{h}^{\prime}-\hat{h}\right)>\epsilon$ do

3: $\quad \hat{h} \leftarrow\left(\hat{h}^{\prime}-\max \left\{\hat{h}^{\prime}\right\} e+\hat{h}\right) / 2$
4: $\quad \hat{h}^{\prime}(\hat{\mu}) \leftarrow\left(\mathcal{B}^{\Sigma} \hat{h}\right)(\hat{\mu})$ for all $\hat{\mu} \in \Sigma \quad \triangleright$ Update of bias
: end while
6: $\hat{g} \leftarrow \max \left(\hat{h}^{\prime}-\hat{h}\right)$
7: return \hat{g}, \hat{h}

Proposition ${ }^{2}$

Convergence time of RVI $=O\left(\epsilon^{-2}\right)$

[^27]
Weak-KAM solution

Let T_{c}^{+}be the positive Lax-Oleinick semi-group, defined as

$$
\begin{equation*}
T_{c}^{+} h(x):=\sup _{y \in \mathcal{X}}\{h(y)-c(x, y)\} \tag{5}
\end{equation*}
$$

Existence of positive weak KAM solution, case of controllable system ${ }^{1}$
Assume that $c(\cdot, \cdot)$ is uniformly bounded and jointly continuous. Then, the problem

$$
\begin{equation*}
T_{c}^{+} h=h+g \tag{6}
\end{equation*}
$$

admits a solution $h^{*} \in \operatorname{Vex}(\mathcal{X})$ and $g^{*} \in \mathbb{R}$. Moreover, any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ satisfying $x_{n+1} \in \arg \max T_{c}^{+} h^{*}\left(x_{n}\right)$ for $n \in \mathbb{N}$ minimizes the average stage cost:

$$
\begin{equation*}
\lambda^{*}=\inf _{\left(x_{n}\right)_{n \in \mathbb{N}}} \limsup _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} c\left(x_{n}, x_{n+1}\right) . \tag{7}
\end{equation*}
$$

[^28]
Aubry set

Let $h \in \mathcal{S}$ be a critical subsolution. The Aubry set of $h, \widetilde{\mathbb{A}}_{h} \in \mathcal{X}^{\mathbb{N}}$, is defined as

$$
\tilde{\mathbb{A}}_{h}=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \mid \forall n<p, h\left(x_{p}\right)-h\left(x_{n}\right)=\sum_{k=n}^{p-1} c\left(x_{k}, x_{k+1}\right)+(p-n) g^{*}\right\}
$$

The Aubry set $\widetilde{\mathbb{A}}$ is then the intersection over all the critical subsolutions, i.e., $\widetilde{\mathbb{A}}=\cap_{h \in \mathcal{S}} \widetilde{\mathbb{A}}_{h}$. Finally, the projected Aubry set \mathbb{A} refers to the projection of the Aubry set on the first component, and is given by

$$
\mathbb{A}=\left\{x_{0} \mid\left(x_{n}\right)_{n \in \mathbb{Z}} \in \widetilde{\mathbb{A}}\right\} \subseteq\left(\mathcal{X}^{2}\right)^{\mathbb{N}}
$$

Projected Aubry set \leftrightarrow states where an optimal strategy can go through infinitely-many times.
\rightarrow In particular, a τ-cycle $\left(x_{n}\right)_{n \in \mathbb{N}}$, where $x_{i+\tau}=x_{i}$ for all $i \in \mathbb{N}$, belongs to the Aubry set if $\sum_{i=1}^{\tau} c\left(x_{k}, x_{k+1}\right)=-\tau g^{*}$, i.e., it produces an optimal average long-term reward.
Therefore, Aubry sets are able to capture the "optimal support" of the dynamics.

Turnpike properties

Strict-dissipativity condition:

$$
\begin{equation*}
h(y)-h(x)+\alpha\left(\left\|x-x_{e}\right\|\right) \leq c(x, y)+g^{*}, x, y \in \mathcal{X} \tag{8}
\end{equation*}
$$

Convergence to a steady-state

If (8) holds, then $\widetilde{\mathbb{A}}=\left\{\left(x_{n}\right)_{n \in \mathbb{N}}\right\}$ where $x_{n}=x_{e}$ for all $n \in \mathbb{N}$.

Convergence to the Aubry set

Let h^{*} be a positive weak KAM solution, and $x_{0} \in \mathcal{X}$. We denote by $\pi^{*}(\cdot) \in \arg \max T_{c}^{+} h^{*}$ an optimal stationary policy and $\left\{x_{i}^{*}\right\}$ the sequence of states generated by the policy π^{*}. Then, all the accumulation points of the sequence $\left\{x_{i}\right\}$ belong to the projected Aubry set \mathbb{A}.

Sketch of proof: exploiting the existence of a strict subsolution h_{0} such that:

$$
\begin{equation*}
h_{0}(y)-h_{0}(x)<c(x, y)+g^{*} \text { for all }(x, y) \notin \widehat{\mathbb{A}} . \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\nu(S, i)=\max _{e \in \mathcal{E}}\left\{\max _{j \in S} \hat{u}_{j}(e)-\max _{j \in S \backslash\{i\}} \hat{u}_{j}(e)\right\}=\max _{e \in \mathcal{E}} \min _{j \in S \backslash\{i\}}\left\{\hat{u}_{i}(e)-\hat{u}_{j}(e)\right\} . \tag{10}
\end{equation*}
$$

Then, the importance metric can be computed by solving a linear program :

$$
\begin{equation*}
\max _{e \in \mathcal{E}, \nu}\left\{\nu \quad \text { s.t } \quad \forall j \in S \backslash\{i\}, \hat{u}_{i}(e)-\hat{u}_{j}(e) \geq \nu\right\} \tag{i}
\end{equation*}
$$

```
Algorithm 1: Pruning with local update
```

Require: n
$S \leftarrow \Sigma$
$I \leftarrow \Sigma \quad \triangleright$ Problems to recompute
for $t=1:|\Sigma|-n$ do
for $i \in I$ do
$\nu_{i}, \lambda_{i} \leftarrow$ solution of $\left(P_{i}^{S}\right)$
$J_{i} \leftarrow\left\{j \in S \backslash\{i\} \mid \lambda_{i j}>0\right\}$
end for
$r \leftarrow \arg \min _{i \in S} \nu_{i}$
$S \leftarrow S \backslash\{r\}$
$I \leftarrow\left\{i \in S \mid r \in J_{i}\right\} \quad \triangleright$ Neighbors
end for
return S

Proposition

Let $\left\{\lambda_{i j}\right\}$ be the optimal dual variables in $\left(P_{i}^{S}\right)$.
Then, the importance metric of i stays unchanged when we remove a contract j s.t.
$\lambda_{i j}=0$, or equivalently

$$
\{i \mid \nu(S \backslash\{j\}, i) \neq \nu(S, i)\} \subseteq I:=\left\{i \mid \lambda_{i j}>0\right\}
$$

Resolution of the discretized R.-C. problem

$$
\left.\left.\begin{array}{rl}
\max _{\left(u_{i}, q_{i}\right)_{i \in \Sigma}} & J^{\Sigma}(u, q) \\
\text { s.t. } & u_{i} \\
\geq R_{i}, \forall i \\
& u_{i}
\end{array}\right)\left[u^{-}, u^{+}\right], q_{i} \in\left[q^{-}, q^{+}\right], \forall i\right)
$$

\rightarrow We look at a special case of b-convexity constraint ${ }^{1}$.
\rightarrow The number of convexity constraint $\left(O\left(|\Sigma|^{2}\right)\right)$ can be reduced ${ }^{2}$ to $O\left(|\Sigma| \ln ^{2}|\Sigma|\right)$ in \mathbb{R}^{2}.
\rightarrow Here, we use an iterative procedure:

1. Start with $u_{i}-u_{j} \geq\left\langle e_{i}-e_{j}, q_{i}\right\rangle_{2}, \forall i, j$ such that $j \in \mathcal{N}(i)$.
2. Solve the discretized version with the partial set of convexity constraints.
3. If remaining convexity constraints are violated, add them to the model and return to '2.' Otherwise, return the solution.
[^29]
Computation of the importance metric

Exact computation of $\nu(S, i)$ in the $2 D$-case :

UPDATEImpMetric (J-based error)

$$
\begin{array}{ll}
\text { Require: } I,\left(V_{i}\right)_{i \in S},\left(F_{j,-i}\right)_{i \in I, j \in J_{i}} \\
\text { 1: } & M_{0} \leftarrow \sum_{i \in S} \iint_{V_{i}} M\left(e, \hat{q}_{i}\right) \mathrm{d} x \\
\text { 2: for } i \in S \text { do } \\
\text { 3: } & \delta_{L} \leftarrow \sum_{j \in J_{i}} \iint_{F_{j,-i} \cap V_{i}} L\left(e, \hat{u}_{i}(e), \hat{q}_{i}\right)-L\left(e, \hat{u}_{j}(e), \hat{q}_{j}\right) \mathrm{d} x \\
\text { 4: } & \delta_{M} \leftarrow \sum_{j \in J_{i}} \iint_{F_{j,-i} \cap V_{i}} M\left(e, \hat{q}_{j}\right)-M\left(e, \hat{q}_{i}\right) \mathrm{d} x \\
\text { 5: } & \nu_{i} \leftarrow \delta_{L}-C\left(M_{0}\right)+C\left(M_{0}+\delta_{M}\right) \\
\text { 6: end for }
\end{array}
$$

Green's formula

Let P a 2D-polytope describes by its vertices $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{2}$ (counter-clockwise). Then $\forall a, b, c \in \mathbb{R}$,

$$
\iint_{P}(a x+b y+c) d x d y=\sum_{i=1}^{N}\left[\oint_{y_{i}}^{y_{i+1}} b\left(q_{i}+\frac{1}{\tau_{i}} y\right) y d y-\oint_{x_{i}}^{x_{i+1}}(a x+c)\left(p_{i}+\tau_{i} x\right) d x\right]
$$

with $\tau_{i}=\frac{y_{i+1}-y_{i}}{x_{i+1}-x_{i}}, p_{i}:=y_{i}-\tau_{i} x_{i}$ and $q_{i}:=x_{i}-\frac{1}{\tau} y_{i}$.

Link with Bregman Voronoï diagrams

We define the Bregman divergence $D_{u}: \mathcal{E} \times \mathcal{E} \rightarrow \mathbb{R}_{+}$with respect to a convex differentiable function u as

$$
\begin{equation*}
D_{u}\left(e_{1}, e_{2}\right)=u\left(e_{1}\right)-u\left(e_{2}\right)-\left\langle e_{1}-e_{2}, \nabla u\left(e_{2}\right)\right\rangle \tag{11}
\end{equation*}
$$

Definition (Bregman Voronoï diagram ${ }^{1}$)

Let $\mathcal{S}=\left\{e_{1}, \ldots, e_{n}\right\}$ be a set of n points of \mathcal{E}. We call Bregman Voronoï diagram of \mathcal{S} :

$$
\begin{equation*}
\operatorname{vor}_{u}\left(e_{i}\right):=\left\{e \in \mathcal{E} \mid D_{u}\left(e, e_{i}\right) \leq D_{u}\left(e, e_{j}\right), \forall j \in[n]\right\} \tag{12}
\end{equation*}
$$

The point e_{i}, associated with the Voronoï cell $\mathcal{C}_{i}=\operatorname{vor}_{u}\left(e_{i}\right)$, is called a site.

Proposition (Interpretation as Voronoï diagram)

Let $\mathcal{S}=\left\{e_{1}, \ldots, e_{n}\right\}$ be a set of n points of \mathcal{E}. We define the family of function \hat{u}_{i} as the supporting hyperplanes of u at e_{i}, i.e.,

$$
\hat{u}_{i}(e)=u\left(e_{i}\right)+\left\langle e-e_{i}, \nabla u\left(e_{i}\right)\right\rangle .
$$

Then, the maximization diagram of $\left\{\hat{u}_{i}\right\}_{1 \leq i \leq n}$ and the Bregman Voronoï diagram of \mathcal{S} coincides.

[^30]
Clustering with Bregman distance

We associate to \mathcal{E} the p.d.f. ρ satisfying $\int_{\mathcal{E}} \rho(e)$ de.
We denote by $L_{u}(\mathcal{S})$ the loss of optimality induced by a set of representatives $\mathcal{S}=\left\{e_{1}, \ldots, e_{n}\right\}$:

$$
\begin{equation*}
L_{u}(\mathcal{S})=\sum_{i=1}^{n} \int_{\operatorname{vor}_{u}\left(e_{i}\right)} D_{u}\left(e, e_{i}\right) \rho(e) \mathrm{d} e=\int_{\mathcal{E}}\left(u(e)-\max _{1 \leq i \leq n} \hat{u}_{i}(e)\right) \rho(e) \mathrm{d} e \tag{13}
\end{equation*}
$$

If ρ is the uniform distrib., $L_{u}(\mathcal{S})$ is the L_{1}-error between $u(\cdot)$ and the upper envelope of $\left\{\hat{u}_{i}\right\}_{1 \leq i \leq n}$.

```
Algorithm 3: Bregman Hard Clustering - Lloyd procedure ([Ban+05])
Require: number of cluster \(n\), initial centroids \(\left\{e_{i}^{(0)}\right\}_{1 \leq i \leq n}\)
    1: \(t \leftarrow 0\)
    do
3: \(\quad \mathcal{C}_{i}^{(t)} \leftarrow\left\{e \in \mathcal{E} \mid D_{u}\left(e, e_{i}^{(t)}\right) \leq D_{u}\left(e, e_{j}^{(t)}\right), \forall j \in[n]\right\}\) for all \(i \in[n] \quad \triangleright\) Assignment step
4: \(\quad e_{i}^{(t+1)}=\int_{\mathcal{C}_{i}^{(t)}} e \rho_{\mid \mathcal{C}_{i}^{(t)}}(e) \mathrm{d} e \quad \triangleright\) Centroid estimation step
    5: \(\quad t \leftarrow t+1\)
    while there exist \(i \in[n]\) such that \(e_{i}^{(t)} \neq e_{i}^{(t-1)}\)
    return \(\left\{e_{i}^{(t)}\right\}_{1 \leq i \leq n}\)
```


Isoelasticity (1)

Details on the model :

\diamond Each contract is defined by a fixed price component $p \in \mathbb{R}$ (in $€$), and d variable price components $z \in \mathbb{R}^{d}$ (in $€ / k W h$) (typically $d=2$ in France).
\diamond The price coefficients (p, z) belong to a non-empty polytope $P \times Z \subset \mathbb{R}^{d+1}$:

$$
P=\left[p^{-}, p^{+}\right], \quad Z:=\left\{z^{-} \leq z \leq z^{+} \mid z_{i_{1}} \leq \kappa_{i_{1}, i_{2}} z_{i_{2}} \text { for } i_{1} \leq \mathcal{P} i_{2}\right\},
$$

where \mathcal{P} is a partially ordered set (poset) of $\{1, \ldots, d\}$, and $\leq_{\mathcal{P}}$ the ordering relation.
\rightarrow Classically in electricity pricing : inequalities between peak and off-peak prices.
\diamond Each individual in the population is characterized by a reference consumption vector $e \in \mathbb{R}_{>0}^{d}$, and can deviate from it (elasticity).
Here, we use Constant Relative Risk Aversion (CRRA,[Pin12; Ala+20]) :

$$
\begin{equation*}
\mathcal{U}_{e}: x \in \mathbb{R}_{\geq 0}^{d} \mapsto \frac{1}{\eta} \sum_{i=1}^{d} \beta_{e i}\left(x_{i}\right)^{\eta}, \eta \in(-\infty, 0) \cup(0,1], \tag{14}
\end{equation*}
$$

where $\beta_{e} \in \mathbb{R}_{\geq 0}^{d}$ is the intensity of energy needs. The coefficient η is the risk aversion coefficient.

Isoelasticity (2)

Details on the model :
\diamond For price coefficients $(p, z) \in \mathbb{R} \times \mathbb{R}^{d}$, a consumer e will optimize his consumption in order to maximize the welfare function :

$$
\begin{equation*}
\mathcal{U}_{e}^{*}:(p, z) \in \mathbb{R} \times \mathbb{R}^{d} \mapsto \max _{x \in \mathbb{R} \geq 0^{d}}\left\{\mathcal{U}_{e}(x)-\langle x, z\rangle\right\}-p . \tag{15}
\end{equation*}
$$

\diamond If $e \in \mathbb{R}^{d}$ is obtained for reference prices $\check{\rho} \in \mathbb{R}$ and $\check{z} \in \mathbb{R}^{d}$, the optimal consumption of customer $\mathcal{E}_{e i}$ on period $i \in[d]$ is:

$$
\begin{equation*}
\mathcal{E}_{e i}(z)=e_{i}\left(z_{i} / \check{z}_{i}\right)^{\frac{-1}{1-\eta}} \geq 0, \tag{16}
\end{equation*}
$$

and the welfare function is given by

$$
\begin{equation*}
\mathcal{U}_{e}^{*}(p, z)=\left(\frac{1}{\eta}-1\right) \sum_{i=1}^{d} e_{i} \check{z}_{i}\left(z_{i} / \check{z}_{i}\right)^{\frac{-\eta}{1-\eta}}-p . \tag{17}
\end{equation*}
$$

Assumption : the provider is able to define as many offers as consumers

$$
\text { (infinite-size) menu : } \quad e \mapsto(p(e), q(e)) \in P \times Q
$$

Model

Let us define the (weighted) invoice of a consumer as

$$
\begin{equation*}
\mathcal{L}_{e}:(p, z) \in \mathbb{R} \times \mathbb{R}^{d} \mapsto\left(p+\left\langle\mathcal{E}_{e}(z), z\right\rangle\right) \rho(e) \tag{18}
\end{equation*}
$$

where $\int \rho(e) \mathrm{d} e=1$. The revenue maximization problem is then

$$
\begin{array}{ll}
\max _{p, z} & \mathcal{J}^{1}(p, z)-\mathcal{J}^{2}(z) \\
\text { s.t. } & \mathcal{U}_{e}^{*}(p(e), z(e)) \geq \mathcal{U}_{e}^{*}\left(p\left(e^{\prime}\right), z\left(e^{\prime}\right)\right), \forall e, e^{\prime} \\
& \mathcal{U}_{e}^{*}(p(e), z(e)) \geq R(e), \forall e \\
& p(e) \in P, z(e) \in Z \tag{19d}
\end{array}
$$

where $\mathcal{J}^{1}(p, z)=\int \mathcal{L}_{e}(p(e), z(e)) \mathrm{d} e$ and $\mathcal{J}^{2}(z)=C\left(\int \sum_{i=1}^{d} \mathcal{E}_{e i}(z(e)) \rho(e) \mathrm{d} e\right)$.
Recovering linear utilities : let us consider $q_{i}:=\left(z_{i} / \check{z}_{i}\right)^{\frac{-\eta}{1-\eta}}$.Then,

- the consumption is convex, expressed as $\mathfrak{E}_{e i}\left(q_{i}\right)=e_{i}\left[q_{i}\right]^{\frac{1}{\eta}}$
- both the utility and the weighted invoice are linear: defining $\alpha=\left(\eta^{-1}-1\right)$ ž,

$$
\begin{align*}
u(e) & :=\langle e, \alpha \odot q(e)\rangle-p(e) \\
L(e, u(e), q(e)) & :=\left(\frac{1}{\eta}\langle e, \check{z} \odot q(e)\rangle-u(e)\right) \rho(e) \tag{20}
\end{align*}
$$

Ranking game (1)

[^31]
Ranking game (2)

[^32]
Ranking game (3)

(c) Terminal consumption distribution for the four sub-populations

Benett's inequality

Refined Bennett's inequality ${ }^{1}$

Let ξ_{1}, \ldots, ξ_{N} be N independent random variables. If there exist $b, \sigma \in \mathbb{R}^{N}$ such that such that
(i) $\mathbb{P}\left[\xi_{k}-\mathbb{E}\left[\xi_{k}\right] \leq b_{k}\right]=1, k \in\{1, \ldots, N\}$,
(ii) $\operatorname{Var}\left(\xi_{k}\right) \leq \sigma_{k}^{2}, k \in\{1, \ldots, N\}$.

Then, introducing $\gamma_{k}:=\frac{\sigma_{k}^{2}}{b_{k}^{2}}$, for all $d \geq 0$

$$
\begin{equation*}
\forall \lambda \in \mathbb{R}_{\geq 0}^{N}, \quad \ln \mathbb{P}[\langle\lambda, \xi-\mathbb{E}[\xi]\rangle \geq d] \leq \inf _{t \geq 0}\left\{-t d+\sum_{k=1}^{N} \ln \left(\frac{\gamma_{k} e^{t \lambda_{k} b_{k}}+e^{-t \lambda_{k} b_{k} \gamma_{k}}}{1+\gamma_{k}}\right)\right\} \tag{21}
\end{equation*}
$$

[^33]
Distributionally robust knapsack problem

$$
\max _{y \in\{0,1\}^{N}} \pi^{T} y \quad \text { s.t } \quad \sup _{F \in \mathcal{D}(\mu, \sigma, b)} \mathbb{P}_{F}\left[\xi^{T} y \geq c\right] \leq \tau
$$

with uncertainty set

$$
\mathcal{D}(\mu, \sigma, b)=\left\{\begin{array}{l|l}
F & \begin{array}{l}
\left.\mathbb{P}_{F}\left[\left|\xi_{i}-\mu_{i}\right| \leq b_{i}\right]=1,\right\} \\
\mathbb{E}_{F}\left[\xi_{i}\right]=\mu_{i}, i=\{1, \ldots, N\} \\
\operatorname{Var}\left(\xi_{i}\right) \leq \sigma_{i}^{2}
\end{array}
\end{array}\right\}
$$

Our approach:

$$
\max _{\substack{y \in\{0,1\}^{N} \\ z \geq 0}} \pi^{T} y \quad \text { s.t } \quad \sum_{k=1}^{N} z \ln \left(\frac{\gamma_{k} e^{\frac{y_{k}}{2} b_{k}}+e^{-\frac{y_{k}}{z} b_{k} \gamma_{k}}}{1+\gamma_{k}}\right)-z \ln (\tau)+\mu^{T} y \leq c
$$

Comparison with:

- Hoeffding: $\max _{y \in\{0,1\}^{N}} \pi^{T} y$ s.t $\sqrt{2 \ln (1 / \tau)} \sqrt{y^{T} B y}+\mu^{T} y \leq c$
- Chebyshev-Cantelli: $\max _{y \in\{0,1\}^{N}} \pi^{T} y$ s.t $\sqrt{\frac{1}{\tau}-1} \sqrt{y^{T} \Sigma y}+\mu^{T} y \leq c$

Entropic bounds

We define the ℓ_{q}-normof a vector $x \in \mathbb{R}^{n}, p \geq 1$, as:

$$
\|x\|_{q}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{\frac{1}{q}}
$$

We remind the known lower bounds of $\|x\|_{0}$ as ratios of norms $\left(\forall x \in \mathbb{R}^{n} \backslash\{0\}\right)$:
We introduce a family of bounds generalizing the two previous bounds: for $x \neq 0$, and $\alpha>0$, define

$$
B_{\alpha}(x):=\left(\frac{\|x\|_{1}}{\|x\|_{\alpha}}\right)^{\frac{\alpha}{\alpha-1}}=\exp H_{\alpha}(p(x))=\left(\sum_{i \in[n]} p_{i}(x)^{\alpha}\right)^{\frac{1}{\alpha-1}}, \quad p(x):=|x| /\|x\|_{1}
$$

In particular, B_{1} simplifies to the exponential of the Shannon entropy.

$$
\begin{equation*}
B_{1}(x)=\frac{\|x\|_{1}}{\prod_{i \in[n]}\left|x_{i}\right| x_{i} \mid /\|x\|_{\mathbf{1}}}=\|x\|_{1} \exp \left(-\frac{1}{\|x\|_{1}} \sum_{i \in[n]}|x|_{i} \log |x|_{i}\right) \tag{22}
\end{equation*}
$$

Monotonicity according to order α, see e.g. [Cac97]

$$
\begin{equation*}
B_{\infty}(x) \leq \cdots \leq B_{2} \leq \cdots \leq B_{1} \leq \cdots \leq B_{0}=\|x\|_{0} . \tag{23}
\end{equation*}
$$

Metric estimates between B_{α} and ϵ-cardinality

Let $\mathcal{A} \subset \mathbb{R}_{+}^{n}$. A real-valued function $\phi: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ is said to be Schur-convex (resp. Schur-concave) if $\phi(x) \leq \phi(y)$ (resp. $\phi(x) \geq \phi(y)$ for any $x, y \in \mathcal{A}$ satisfying $x \prec y$.

Proposition, see [MOA11], Appendix F.3.a (p.532)

The Rényi entropy of an arbitrary $\alpha>0$ is Schur-concave.
We define the ϵ-cardinality as

$$
\begin{equation*}
\operatorname{card}_{\epsilon}(p)=\left|\left\{i \in[n] \mid p_{i} \geq \epsilon\right\}\right| \tag{24}
\end{equation*}
$$

For any $\epsilon>0$ and $0<\alpha \leq 1$, an optimal solution of the problem

$$
\min _{p \in \Delta_{n}}\left\{H_{\alpha}(p) \mid \operatorname{card}_{\epsilon}(p)=k\right\}
$$

$$
\left(P_{\alpha, \epsilon}^{k, n}\right)
$$

is $v_{n}(k, \epsilon)$, defined as

$$
\left[v_{n}(k, \epsilon)\right]_{i}=\left\{\begin{array}{lr}
1-(k-1) \epsilon, & i=1 \tag{25}\\
\epsilon, & 2 \leq i \leq k \\
0, & k+1 \leq i \leq n
\end{array}\right.
$$

and corresponds to an objective value $\phi_{\alpha, \epsilon}(k)$.
As a conclusion, $\operatorname{card}_{\epsilon}(p)=k \Rightarrow B_{\alpha}(p) \geq \phi_{\alpha, \epsilon}(k)$, implying that $B_{\infty}(p) \leq b \Rightarrow \operatorname{card}_{\epsilon}(p) \leq \phi_{\alpha, \epsilon}^{-1}(b)$.

[^0]: ${ }^{1}$ H. von Stackelberg. "Theory of the Market Economy" (1952)

[^1]: ${ }^{1}$ H. von Stackelberg. "Theory of the Market Economy" (1952)

[^2]: ${ }^{1}$ S. Leyffer and T. Munson. "Solving multi-leader-common-follower games". In: Optimization Methods and Software 25.4 (2010), pp. 601-623

[^3]: ${ }^{1}$ M. Labbé, P. Marcotte, and G. Savard. "A bilevel model of taxation and its application to optimal highway pricing". In: Management science 44 (1998), pp. 1608-1622

[^4]: ${ }^{1}$ E. Baldwin and P. Klemperer. "Understanding preferences:"demand types", and the existence of equilibrium with indivisibilities". In: Econometrica 87.3 (2019), pp. 867-932

[^5]: ${ }^{1}$ E. Baldwin and P. Klemperer. "Understanding preferences:"demand types", and the existence of equilibrium with indivisibilities". In: Econometrica 87.3 (2019), pp. 867-932

[^6]: ${ }^{1}$ H. Li, S. Webster, N. Mason, and K. Kempf. "Product-Line Pricing Under Discrete Mixed Multinomial Logit Demand". In: Manufacturing and Service Operations Management 21 (2019), pp. 14-28
 F. Gilbert, P. Marcotte, and G. Savard. "A Numerical Study of the Logit Network Pricing Problem". In: Transportation Science 49 (Jan. 2015), p. 150105061815001

[^7]: ${ }^{1}$ L. Condat. "Fast Projection onto the Simplex and the I1 Ball". In: Mathematical Programming, Series A 158.1 (July 2016), pp. 575-585

[^8]: ${ }^{1}$ V. Guruswami, J. D. Hartline, A. R. Karlin, D. Kempe, C. Kenyon, and F. McSherry. "On profit-maximizing envy-free pricing.". In: SODA. vol. 5. 2005, pp. 1164-1173

[^9]: ${ }^{1}$ L. Bai, J. Mitchell, and J.-S. Pang. "On convex quadratic programs with linear complementarity constraints". In: Computational Optimization and Applications 54 (Apr. 2013)
 ${ }^{2}$ F. Jara-Moroni, J. Mitchell, J.-S. Pang, and A. Wächter. "An enhanced logical benders approach for linear programs with complementarity constraints". In: Journal of Global Optimization 77 (May 2020)

[^10]: ${ }^{1}$ N. Hansen. "The CMA evolution strategy: a comparing review". In: Towards a new evolutionary computation. Advances on estimation of distribution algorithms. New York: Springer, 2006, pp. 75-102
 ${ }^{2}$ R. Fletcher and S. Leyffer. FilterMPEC. Available at https://neos-server.org/neos/solvers/cp:filterMPEC/AMPL.html

[^11]: ${ }^{1}$ Optimal customers' distribution with quadratic regularization of intensity $\beta=0.2$. The size of the bar defines the probability of choices, i.e., a bar taking a fourth of the rectangle height represents a choice probability of 25%.

[^12]: ${ }^{2}$ M. Motte and H. Pham. "Mean-field Markov decision processes with common noise and open-loop controls". In: The Annals of Applied Probability 32.2 (Apr. 2022)

[^13]: ${ }^{1}$ P. Pavlidis and P. B. Ellickson. "Implications of parent brand inertia for multiproduct pricing". In: Quantitative Marketing and Economics 15.4 (July 2017), pp. 369-407

[^14]: ${ }^{3}$ the Markov Chain induced by any deterministic stationary policy consists of a single recurrent class plus a -possibly emptyset of transient states (i.e., there exists a subset of states that are visited infinitely often with probability 1 independently of the starting state)
 ${ }^{4}$ for all state s, action a and measurable subset B of the state space, $P(B \mid x, a) \geq \epsilon \mu(B)$
 5^{5} for every pair of states $\left(s, s^{\prime}\right)$, there exists an action a making s^{\prime} accessible from s

[^15]: ${ }^{1}$ P.-L. Lions, G. Papanicolaou, and S. Varadhan. "Homogenization of Hamilton-Jacobi equation". Jan. 1987

[^16]: ${ }^{1}$ J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. McGettrick, and J.-P. Quadrat. "Numerical Computation of Spectral Elements in Max-Plus Algebra". In: IFAC Proceedings Volumes 31.18 (July 1998), pp. 667-674

[^17]: ${ }^{1}$ J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. McGettrick, and J.-P. Quadrat. "Numerical Computation of Spectral Elements in Max-Plus Algebra". In: IFAC Proceedings Volumes 31.18 (July 1998), pp. 667-674

[^18]: ${ }^{1}$ J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. McGettrick, and J.-P. Quadrat. "Numerical Computation of Spectral Elements in Max-Plus Algebra". In: IFAC Proceedings Volumes 31.18 (July 1998), pp. 667-674
 ${ }^{2}$ A. Federgruen, P. Schweitzer, and H. Tijms. "Contraction mappings underlying undiscounted Markov decision problems". In: Journal of Mathematical Analysis and Applications 65.3 (Oct. 1978), pp. 711-730
 ${ }^{3}$ M. Akian, S. Gaubert, U. Naepels, and B. Terver. Solving irreducible stochastic mean-payoff games and entropy games by relative Krasnoselskii-Mann iteration. 2023

[^19]: ${ }^{1}$ J.-C. Rochet and P. Choné. "Ironing, sweeping, and multidimensional screening". In: Econometrica (1998), pp. 783-826

[^20]: ${ }^{a}$ D. Bergemann, E. Yeh, and J. Zhang. "Nonlinear pricing with finite information". In: Games and Economic Behavior 130 (Nov. 2021), pp. 62-84

[^21]: $1_{\text {e.g., G. Carlier and } X \text {. Dupuis. "An iterated projection approach to variational problems under generalized convexity }}$ constraints". In: Applied Mathematics and Optimization 76.3 (2017), pp. 565-592

[^22]: ${ }^{1}$ S. Gaubert, W. McEneaney, and Z. Qu. "Curse of dimensionality reduction in max-plus based approximation methods: Theoretical estimates and improved pruning algorithms". In: IEEE Conference on Decision and Control and European Control Conference. IEEE, Dec. 2011

[^23]: ${ }^{1}$ D. Avis. "A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm". In: Polytopes - Combinatorics and Computation. Ed. by G. Kalai and G. M. Ziegler. Basel: Birkhäuser Basel, 2000, pp. 177-198

[^24]: ${ }^{1}$ C. Alasseur, E. Bayraktar, R. Dumitrescu, and Q. J. A Rank-Based Reward between a Principal and a Field of Agents: Application to Energy Savings. preprint. 2022
 ${ }^{2}$ Q. J. and R. Zorgati. Tight Bound for Sum of Heterogeneous Random Variables: Application to Chance Constrained Programming. 2022
 ${ }^{2}$ Q. J., A. Bialecki, L. E. Ghaoui, S. Gaubert, and R. Zorgati. "Entropic Lower Bound of Cardinality for Sparse Optimization". Nov. 2022

[^25]: ${ }^{1}$ R. Shioda, L. Tunçel, and T. Myklebust. "Maximum utility product pricing models and algorithms based on reservation price". In: Computational Optimization and Applications 48 (Mar. 2011), pp. 157-198
 ${ }^{2}$ C. G. Fernandes, C. E. Ferreira, A. J. Franco, and R. C. Schouery. "The envy-free pricing problem, unit-demand markets and connections with the network pricing problem". In: Discrete Optimization 22 (2016), pp. 141-161

[^26]: ${ }^{1}$ Y. Beck, I. Ljubić, and M. Schmidt. "A survey on bilevel optimization under uncertainty". In: European Journal of Operational Research (Feb. 2023)

[^27]: ${ }^{1}$ W. S. Lovejoy. "Computationally Feasible Bounds for Partially Observed Markov Decision Processes". In: Operations Research 39.1 (Feb. 1991), pp. 162-175
 ${ }^{2}$ S. Gaubert and N. Stott. "A convergent hierarchy of non-linear eigenproblems to compute the joint spectral radius of nonnegative matrices". In: Mathematical Control \& Related Fields 10.3 (2020), pp. 573-590

[^28]: ${ }^{1}$ M. Zavidovique. "Strict sub-solutions and Mañé potential in discrete weak KAM theory". In: Commentarii Mathematici Helvetici (2012), pp. 1-39

[^29]: ${ }^{1}$ G. Carlier and X. Dupuis. "An iterated projection approach to variational problems under generalized convexity constraints". In: Applied Mathematics and Optimization 76.3 (2017), pp. 565-592

 2 J.-M. Mirebeau. "Adaptive, anisotropic and hierarchical cones of discrete convex functions'. In: Numerische Mathematik 132.4 (2016), pp. 807-853

[^30]: ${ }^{1}$ J.-D. Boissonnat, F. Nielsen, and R. Nock. "Bregman Voronoi Diagrams". In: Discrete and Computational Geometry 44.2 (Apr. 2010), pp. 281-307

[^31]: ${ }^{1}$ R. Carmona and P. Wang. "Finite-State Contract Theory with a Principal and a Field of Agents". In: Management Science 67.8 (Aug. 2021), pp. 4725-4741
 ${ }^{2}$ R. Elie, T. Mastrolia, and D. Possamaï. "A Tale of a Principal and Many, Many Agents". In: Mathematics of Operations Research 44.2 (May 2019), pp. 440-467
 ${ }^{3}$ A. Shrivats, D. Firoozi, and S. Jaimungal. Principal agent mean field games in REC markets. 2021

[^32]: ${ }^{1}$ R. Carmona and P. Wang. "Finite-State Contract Theory with a Principal and a Field of Agents". In: Management Science 67.8 (Aug. 2021), pp. 4725-4741
 ${ }^{2}$ R. Elie, T. Mastrolia, and D. Possamaï. "A Tale of a Principal and Many, Many Agents". In: Mathematics of Operations Research 44.2 (May 2019), pp. 440-467
 ${ }^{3}$ A. Shrivats, D. Firoozi, and S. Jaimungal. Principal agent mean field games in REC markets. 2021

[^33]: ${ }^{1}$ A. Nemirovski and A. Shapiro. "Convex Approximations of Chance Constrained Programs". In: SIAM Journal on Optimization 17.4 (Jan. 2007), pp. 969-996

